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Abstract

A method using stochastic transfer matrices is applied to description of microcluster growths in typical ternary chal-

cogenide glasses (Ge±As±Se and Ge±Sb±Se systems) during glass transition. By ®nding the unit eigenvalue and eigen-

vector of the stochastic matrix, an analytical relation between the glass transition temperature and the concentration of

atomic species is found. In the chalcogen-rich region this formula reproduces the experimentally observed modi®ed

Gibbs±DiMarzio equation, which is a semi-empirical rule that relates the average coordination number with the glass

transition temperature, using a parameter b which is ®xed by the experimental data. The present approach allows us to

predict a b close to the observed one. Ó 1998 Published by Elsevier Science B.V. All rights reserved.

PACS: 64.70.Pf; 61.43.Fs; 81.10.Fq

1. Introduction

There is still no consensus about which thermodynamical and structural factors are important in deter-
mining the glass transition temperature [1] (Tg), although the subject has considerable practical and tech-
nological importance. Furthermore, this problem must be intimately related to the question of how the
glasses do form [1], i.e., how the complex structures forming the glass network grow as one decreases
the temperature of a liquid. In particular, for chalcogenide glasses, attention has been devoted to correla-
tions of Tg with other physical or chemical properties [2], since such glasses have electric and infrared trans-
mission properties that make them useful in several technological applications [3]. Among these
chalcogenide glasses, ternary systems such as GexAsySe1ÿxÿy and GexSbySe1ÿxÿy have been extensively stud-
ied [3±5] not only for their applications, but also for testing the Phillips constraint theory [6], since the
bonding numbers (valencies) of Ge, As, Sb and Se (4, 3, 3, and 2, respectively) allow the realization of
the rigidity threshold (attained when the average coordination number, hri � 4x� 3y � 2�1ÿ xÿ y� is
2.4) in many di�erent chemical compounds. Also, since Tg is one of the most important parameters for a
description of the glassy state, much work has been done on ternary glasses to determine the dependence
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of Tg on composition [7]. For these systems, it has been observed by Sreeram and co-workers [3] that Tg

follows a modi®ed Gibbs±DiMarzio equation, which can be expressed as

Tg � Tg0

1ÿ b hri ÿ 2� � ; �1�

where Tg0 is the limit of Tg when the concentration of Ge, Sb, or As tends to zero, and b is a constant that
depends on the system and which is ®tted from experimental data [3]. The magnitude of b has not received
much attention, although it is fundamental for determining Tg. To our knowledge, the ®rst successful at-
tempt that presents a theoretical model for determining b in binary glasses can be found in Refs. [8,9].
In this article we present a model of agglomeration and growth that can in a simple way predict b for ter-
nary glasses. The advantage of using a model of growth for this propose, is that one can obtain information
about some characteristic parameters of glass by explaining how it was formed, since we assume that both
questions are intimately related.

In this article, the study of agglomeration in ternary glasses will use the recently introduced stochastic
matrix method (SMM) [10,11]. The SMM is based on the assumption that glass is created when some
basic entities (atoms or clusters) that are present in a liquid agglomerate to form bigger clusters as
the temperature decreases. At any stage of this process, each cluster is divided into two parts, the interior
and the surface. The elementary growth step is achieved by adding a new entity at a given site of the
surface. Clearly, this process occurs with certain probability at each site of the surface depending on
the physical parameters involved, such as the bonding energies, temperatures, and chemical composition
of the liquid. Thus, since after the addition of a new entity to the cluster its surface changes, the distri-
bution of sites on the surface evolves following these probabilities. The idea behind our method is to rep-
resent this change as a matrix that acts on a vector, which contains the `state' of the surface at any stage
of the agglomeration process. We shall show that the SMM always converges to a ®nal con®guration of
probabilities for the glass, irrespective of the initial conditions. It also predicts an oscillatory behavior for
the ®rst steps of agglomeration. These oscillations are damped exponentially as the average cluster size
grows. All these properties are derived from the behavior of eigenvectors and eigenvalues of the stochas-
tic matrix.

2. The stochastic matrix method

In this section we shall construct the stochastic matrix for a ternary system, and we also show some of its
properties. For this purpose, we observe that chalcogenide glasses grow out of a liquid which contains the
basic entities, the local microscopic agglomerates of a few atoms or microclusters, which later on, as the
temperature decreases, agglomerate and form the glass network. These basic entities can represent either
single atoms or clusters that were already present in the liquid before the formation of the glass. For exam-
ple, in the case of a binary glass such as amorphous Sb2Se3, the intramolecular bonds of Sb2Se3 remain in
the liquid state [12]. A similar phenomenon can be observed in amorphous As2Se3, and thus, the ternary
AsxSbySe1ÿxÿy glass can be viewed as a system formed of Sb2Se3 and As2Se3 structural units, diluted in
the extra amount of Se atoms [5] in the chalcogen-rich region (hri < 2:4). Another example is the
AsxSe1ÿx compound, where the As atoms are paired via an intermediate Se (as is shown in Fig. 1), and thus,
the e�ective coordination number of As as a cross linking agent of Se chains is four instead of three [6]. On
the other hand, it is known that in the GexSe1ÿx compound, Ge atoms do not form this kind of microcluster
[6].

Taking into account all these considerations, we shall assume that the liquid which forms GexAsySe1ÿxÿy

contains three types of basic entities: clusters of two As atoms joined by one Se atom, and Ge, Se atoms,
which will be labelled b; c and a units correspondingly, their respective concentrations being Cb, Cc and Ca.

112 G.G. Naumis, R. Kerner / Journal of Non-Crystalline Solids 231 (1998) 111±119



These concentrations of basic entities are related with those of the atomic species by the following equa-
tions:

Cc � x
1ÿ y

; Cb � y
2 1ÿ y� � ; Ca � 1ÿ Cb ÿ Cc: �2�

For the GexSbySe1ÿxÿy compound the same relations hold, except that Cb represents the concentration of
two Sb atoms joined by a Se atom.

With these three basic entities forming covalent bonds between them, there are ®ve elementary processes
of single bond creation. Each process involves its characteristic energy of activation for creating the bond
between two units; these energies will be denoted by E1, E2, E3, E4 and E5 for a±a, a±b, a±c, b±b, b±c and c±c
bonds, respectively.

During the cooling process, clusters of di�erent sizes appear as a result of covalent bond formation be-
tween the smaller entities that are already present in the liquid, and when a new basic entity comes close to a
cluster, it can stick to one of the free valencies available on the surface. Since the coordination numbers of
a, b, and c units are 2,4 and 4, respectively, the new entity may encounter seven types of con®gurations, as
shown in Fig. 2 (observe that in Fig. 2 it is supposed that the two or three membered rings do not appear,
i.e., the growth is dendritic; this assumption allows us to decrease the size of the stochastic matrix but it is
valid only in the chalcogen-rich region).

We shall refer to di�erent con®gurations that appear on the surface of a cluster calling them sites. For
example, a c unit can appear on the surface,with one, two or three free valencies. These con®gurations are
identi®ed as three di�erent sites denoted, respectively, by u; v and w. The b units with one, two and three free
valencies give rise to the sites t; s; r, respectively. A single Se atom belonging to a cluster can have only one
free valency, which represents a site called q. Using all these notations, the state of the surface is speci®ed by
the vector v � �q; r; s; t; u; v;w� whose components are the relative frequencies of each kind of site; therefore
its trace is normalized to one: q� r � s� t � u� v� w � 1. The main task of the SMM is to determine the
evolution of this vector as the clusters continue to grow.

Fig. 2. A typical cluster with seven types of sites on the surface.

Fig. 1. Basic units (a) Se atoms, (b) As±Se±As clusters and (c) Ge atoms.
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We shall represent the growth of clusters divided into elementary steps, which occur when a new entity is
attached to any of the free valencies available on the surface. The probability of joining the new entity to
each of the sites depends basically on two factors, the frequency of the given kind of site on the surface,
represented by the corresponding component of the vector v; and the probability of the sticking process
between the new entity and the surface, which depends on physical parameters such as temperature and
bond activation energy. Once the new entity is attached to a site, a new site on the surface is created.
For example, if we add an a unit to a q site, a new q site is created. Thus, the frequency of q sites in the
new layer is given by

q0 � P �q; q�q; �3�

where P �q; q� is the probability of the process, denoted symbolically as

q� a! q: �4�
As it was said, P �q; q� depends on physical parameters involved in the process of creation of an a±a

bond. In this case, P �q; q� is

P �q; q� � 2CaeÿE1=KT ; �5�
where the probability of the sticking process is a product of two factors, one of which is purely statistic (the
number of ways available for joining the 2 valencies of Se to one of the free bonds of a q site, multiplied by
the concentration of the units of type a in the melt), the other one is the Boltzmann factor which takes into
account the corresponding activation energy barrier necessary to form that bond. Similar expressions can
be formed when a Ge, As±Se±As and Se are added to each of the sites. However, in the GexAsySe1ÿxÿy and
GexSbySe1ÿxÿy systems, the Ge±Ge, Ge±As and Ge±Sb bonds are almost never observed, and thus the prob-
ability of these kinds of bonds is close to zero. This assumption allows us to reduce the number of possible
transformations of sites according to the following scheme:

q� b! r: P �q; r� � 4CbeÿE2=KT ;

q� c! w: P �q;w� � 4Cce
ÿE3=KT ;

r � a! q; s: P �r; q� � P�r; s� � 6CaeÿE2=KT ;

s� a! q; t: P �s; t� � P �s; q� � 4CaeÿE2=KT ;

t � a! q: P �t; q� � 4CaeÿE2=KT ;

u� a! q: P �u; q� � 2CaeÿE3=KT ;

v� a! q; u: P �v; q� � P �v; u� � 4CaeÿE3=KT ;

w� a! q; v: P �w; s� � P �w; v� � 6CaeÿE3=KT :

The transformation of the surface of an average cluster is encoded in the matrix that acts on the vector v,
because the total probability for an entity to stick to a certain site is equal to the probability of the sticking
process multiplied by the frequency of occurrence of the corresponding type of site at the surface. The com-
ponents of the matrix are the probabilities of transformation of each kind of site onto another. Inserting all
the contributions we get the explicit matrix as follows:
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M �

2CaeÿE1=kT 6CaeÿE2=kT 4CaeÿE2=kT 4CaeÿE2=kT 2CaeÿE3=KT 4CaeÿE3=KT 6CaeÿE3=KT

4CbeÿE2=kT 0 0 0 0 0 0

0 6CaeÿE2=kT 0 0 0 0 0

0 0 4CaeÿE2=kT 0 0 0 0

0 0 0 0 0 4CaeÿE3=KT 0

0 0 0 0 0 0 6CaeÿE3=KT

4Cce
ÿE3=KT 0 0 0 0 0 0

0BBBBBBBBBBB@

1CCCCCCCCCCCA
:

This matrix acts on a vector whose components represent the probabilities of ®nding each type of site,
and thus is normalized to one. The vector obtained after applying the matrix also must be normalized since
it should represent a new distribution of probabilities. To assure this normalization, the sum of elements in
each column of the matrix must be equal to one. After normalizing each column, we obtain the matrix in
which only three entries are functions of the concentration and temperature, while all the others are con-
stant:

M �

A 1
2

1
2

1 1 1
2

1
2

B 0 0 0 0 0 0

0 1
2

0 0 0 0 0

0 0 1
2

0 0 0 0

0 0 0 0 0 1
2

0

0 0 0 0 0 0 1
2

C 0 0 0 0 0 0

0BBBBBBBBBBB@

1CCCCCCCCCCCA
: �6�

The entries A;B and C are de®ned as

A � 2Ca

2Ca � 4�Cbn� Ccg� ; B � 4Cbn
2Ca � 4�Cbn� Ccg� ; C � 1ÿ Aÿ B �7�

and where, n � exp��E1 ÿ E2�=kT �, and g � exp��E1 ÿ E3�=kT �.
The consecutive agglomeration and growth of clusters is represented by successive application of the

above matrix to the initial vector v0. After applying N times the matrix, the ®nal con®guration of the sur-
face is

vN �
X7

m�1

am km� �N em; �8�

where em are the eigenvectors of M corresponding to the eigenvalue km, and am are the projections of v0 onto
the eigenvectors of M .

It is easy to prove that a matrix with all the columns normalized to one has at least one eigenvalue equal
to one, while all other (in general, complex) eigenvalues have their norm always less than one. This condi-
tion means that only the eigenvectors with eigenvalue one remain after many successive applications of the
stochastic matrix. If we suppose that M has a single eigenvalue, 1 (corresponding to k1 � 1), then, in the
limit of big N , vN converges to

vN � e1 �9�
since a1 must be one due to conservation of probability. Thus, the surface attains stable statistical regime
after many successive steps of agglomeration, with the statistic given by the eigenvalue 1 eigenvector. The
explicit form of this eigenvector 1 is obtained by solving the system of equations:
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M ÿ 1� �e1 � 0; �10�
which in our particular case yields the following solution:

e1 �

q1
r1
s1
t1
u1
v1
w1

0BBBBBBBBBBB@

1CCCCCCCCCCCA
� 1

13ÿ 7A

4

4B

2B

B

C

2C

4C

0BBBBBBBBBBB@

1CCCCCCCCCCCA
: �11�

Before the process attains the stable regime, oscillations can be observed in ®rst generations, due to the
eigenvalues di�erent from 1, which are in general complex. This fact can be seen if in Eq. (8) we rewrite km

in its polar form (km � kkmkeih�m��,

vN � e1 �
X7

m�2

amkkmkN
eiNh�m�em � e1 �

X7

m�2

ameN ln kkmkeiNh�m�em: �12�

Then, the factor eiNh�m� represents an oscillation, which is exponentially damped by the norm of km, which
acts as a characteristic time of damping for each eigenvector. (Note that lnkkmk < 0 because kkmk < 1.)

The statistical distribution of various sites on the surface of an average cluster enables us to evaluate the
®nal concentration of the corresponding elementary building blocks in the resulting interior matter. This
concentration need not be in principle the same as in the surrounding medium, especially if the agglomer-
ation process takes place in a vapor or from a solution. But in the case of glass transition one should sup-
pose that the concentration of chemical species remains exactly the same as in the liquid at a temperature
above the glass transition temperature, because if the contrary were true, one would observe noticeable lo-
cal departures from the homogeneity (¯uctuations of density and chemical composition), which is clearly
not the case in real glasses.

This constatation enables us to introduce a new constraint in the model, which yields a very useful equa-
tion. Let us denote by X ; Y ; Z the asymptotic values of the respective concentrations of c; b and a-type units
on the surface of an average cluster. Then, the concentration of new c units after the creation of a new layer
is given by x � w1 (observe that in order not to count the c unit twice, u and v sites do not contribute to x,
since the creation of these sites requires more than one step of agglomeration; we count only the ®rst step
which always leads to the formation of a w site). For free Se atoms a similar condition holds, Z � q1. This
leads to the following equation when the values of q1 and w1 are taken from Eq. (11):

Z
X
� q1

w1
� 2Ca � 4Cbn� 4Ccg

4Ccg
: �13�

If we also demand the concentration of b units to attain its limit, Y � r1 we get another equation,

Z
Y
� q1

r1
� 2Ca � 4Cbn� 4Ccg

4Cbn
: �14�

The requirement that the asymptotic values of the concentrations X ; Y and Z in the resulting bulk net-
work be the same as in the surrounding hot liquid before the glass transition results in the following three
equations:

X � Cc; Y � Cb; Z � Cc; �15�
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which means that during the glass transition the stationary r�egime is established, i.e., that the mappings,
Cc ! X �Cb;Cc; T � and Cb ! Y �Cb;Cc; T � attain one of their ®xed points. It is easy to determine that these
conditions can be satis®ed by two solutions; Cb;Cc � 0 (corresponding to a pure Se glass) and another ®xed
point, which is obtained when the following two equations are veri®ed:

2Ca � 4Cbn� 4�Cc ÿ Ca�g � 0; �16�
and

2Ca � 4�Cb ÿ Ca�n� 4Cag � 0: �17�
The last two equations can be also written in terms of the original concentration of atoms by using Eq. (2),

2 1ÿ xÿ 3

2
y

� �
� 4

y
2

� �
n� 4 2x� 3

2
y ÿ 1

� �
g � 0; �18�

and

2 1ÿ xÿ 3

2
y

� �
� 4�2y � xÿ 1�n� 4xg � 0: �19�

As we show in Section 3, these equations lead to important relations between the glass transition tem-
perature, concentration of atomic species and di�erences of various activation energies.

3. Discussion

The example we consider here contains two parameters, n and g; which depend on the energy di�erence
between the two activation processes. We can ®x these values by considering the limit cases of two binary
glasses, i.e; when y � 0 we have the amorphous GexSe1ÿx; and when x � 0 we may have either AsySe1ÿy or
SbySe1ÿy :

If y � 0; we get from Eq. (18),

2�1ÿ x� ÿ 4g � 0: �20�
In a good glass former such as GexSe1ÿx; an amorphous homogenous con®guration is easily obtained with
arbitrarily small modi®er concentration (in this case Ge); the corresponding glass transition temperature in
this limit is denoted by Tog � Tg�x � 0�: Using Eq. (20) we get g at Tog;

g�Tog� � 1

2
�21�

and thus we ®x the ®rst energy di�erence using the de®nition of g;

E1 ÿ E3 � kTog ln�1=2�: �22�
Therefore,

E1 ÿ E2 � kTog ln�1=2� < 0; i:e:; E3 > E1:

This situation is what should be intuitively expected from the strong glass-forming tendency: at a local
level the system behaves undecidedly, in a `frustrated' way, because while the purely statistical factor (4 vs.
2) increases the probability of agglomeration of modi®er's atoms (of the c-type, with valency 4) versus the
probability of pairing of the pure glass-former atoms (of the a-type, here with lower valency 2), the Bolt-
zmann factors act in the opposite direction. The value of Tog is known from experiments [3] to be
Tog � 316� K; giving the di�erence between activation energies of the order of ÿ0:02 eV.
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A similar analysis performed on Eq. (19) when x � 0 leads to

n�Tog� � g�Tog� � 1

2
: �23�

At any other temperature, g and n are obtained from the following identity:

g � n � e�E1ÿE3�=kTg � eTgo ln �1=2�=Tg � 1

2

� �Tgo=Tg

: �24�

Once the parameters are ®xed, we put Eq. (24) into Eq. (18) to ®nd the relation between Tg and the com-
position parameters,

1

2

� �Tgo=Tg

� �1ÿ xÿ 3
2
y�

2�1ÿ 2xÿ 2y� ; �25�

after taking the logarithm, we get

Tog

Tg

ln
1

2

� �
� ln 1ÿ xÿ 3

2
y

� �
ÿ ln�1ÿ 2xÿ 2y� ÿ ln

1

2

� �
: �26�

In the chalcogen-rich region, x; y � 1; and we can use Taylor's expansion of the logarithm, which leads to

Tg � Tog

1ÿ 1
2 ln 2

2x� y� � ; �27�

and ®nally, using that 2x� y � hri ÿ 2, we ®nd

Tg � Tog

1ÿ 1
2 ln 2

hri ÿ 2� � : �28�

The last equation is exactly in the form of the Gibbs±DiMarzio law, which describes quite correctly the be-
havior of the glass transition temperature in many ternary glasses. Furthermore, the direct comparison be-
tween Eq. (28) and Eq. (1) shows that the system parameter, b, is given by

b � 1

2 ln 2
� 0:72:

Experimentally, the observed b is 0.75 for GexSbySe1ÿxÿy [3] and 0.73 for GexAsySe1ÿxÿy [4]; both b's are
in agreement with the b obtained here via SMM. At this point it is interesting to ask about the origin of the
magnitude of b. If we trace back its de®nition, we observe that it came from ®xing g and n at Tog; and thus
depends on the logarithm of the ratio between the coordination number of the elementary units. This fact
can explain why its magnitude is so similar for systems with very di�erent types of atoms.

4. Conclusion

In this paper we studied ternary covalent network glasses using the SMM. An analytical relation be-
tween relevant physical parameters of several chalcogenide based glasses has been found. The correspond-
ing formula is similar to the Gibbs±Di Marzio law. We also obtained the system parameter b that is close to
the one observed in the experiments. Its value depends on the ratio between the coordination numbers of
the elementary units.
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