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Abstract

An study of the effects of three-body interactions in the process of coalition formation is presented. In particular, we

modify a spin glass model of bimodal propensities and also a Potts model in order to include a particular three-body

Hamiltonian that reproduces the main features of the required interactions. The model can be used to study conflicts,

political struggles, political parties, social networks, wars and organizational structures. As an application, we analyze a

simplified model of the Iraq war.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Coalition as a form of aggregation among a set of actors (countries, firms, individuals) has been studied
using concepts from the theory of spin glasses [1–5]. A spin glass is a disordered material exhibiting high
magnetic frustration due to competing interactions [6,7], and in the model of coalition formation, the type (or
sign) of the interactions simulates the respective bilateral propensities of two agents to either cooperation or
conflict. If two agents cooperate (have conflict), they tend to be in the same coalition (different coalition).
Optimal coalitions can be determined according to a minimum conflict principle. The theory can be applied to
many social systems, such as families, internal struggles, political parties in parliments, social networks, and
organizational structures.

In the seminal paper of Axelrod and Bennett [1], both the alignment of 17 European nations in the Second
World War (WW II), and membership in competing alliances of nine computer companies to set standards for
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Unix computer operating systems were investigated. For the WW II alignment model, the propensities were
modelled from past conflict experience, physical borders, religion, etc. [1].

Florian and Galam [3] used the model to describe the fragmentation of former Yugoslavia and showed that
the number of optimal coalitions could be more than two.

However, there are two main shortcomings of all these models. The first one comes from the fuzziness in
mathematical sociology that arises from trying to quantify some traits in social behavior. Therefore, a better
and more detailed quantification of bilateral propensities must be the aim in every particular problem. But the
second criticism is a very general one and deals with the lack of the more general ‘‘many-body problem
interaction’’ as known to physicists. This could also be called many-body-correlation interaction.

It is easy to motivate its inclusion in the model of formation of alliances since there are many empirical
evidence of its importance. Let us just say, in a very colloquial way, that the behavior of two persons (or two
animals) can be very different when another person (or animal) is present. The corresponding analogy is a
well-known fact in some branches of physics. For example, in contrast to two-body long range coulombic and
gravitational interactions, three- or four-body interaction are naturally present in nuclear or high-energy
physics [8,9].

Also, in atomic and molecular physics and in polymers, many-body interactions are employed to fit or
simulate bending, torsion, and general bonds [10–12]. On the other hand, many-body collisions have to be
considered in dense systems [13].

In social sciences there is a previous qualitative effort to deal with behavior rules among friends and enemies
employing three-body interactions. The main idea was to change rules such as ‘‘the enemy of my enemy is my
friend’’ into ‘‘the enemy of my enemy may or not be my friend’’ [14]. Furthermore, very recently it has been
shown the importance of multi-scientist (more than two) collaborations in the social network [15]. This
motivates the introduction of generalized networks, where basic connections are not binary, but involve
arbitrary number of components, like three-body interaction [15].

In this work, within the spirit of applying spin glass concepts to the formation of alliances, we generalize
the theory to include three-body interactions and furthermore we show how it works in an important and
recent geopolitical event such as the 2003 war in Iraq. Note that here we present a general failure of
the available spin models used in the literature, since three-body effects have not been considered neither
in the Ising nor in the Potts like models used by many workers. The structure of the paper is the following,
in Section 2 we analyze the two-body models and a simplified model of the Iraq war, in Section 3 we
develop the three-body interaction for bimodal coalitions, and in Section 4 we present the case of the Potts
model, which allows to treat neutrality in a more natural way. Finally, in the last section, the conclusions
are given.

2. Coalition formation and spin glass models

Axelrod and Bennett [1] (AB) first attempted to explain the composition of coalitions by employing the
relative pairwise affinity or bilateral propensity pij between actors i and j to define an ‘‘energy’’ of the system,

EðX Þ ¼
X
i4j

sisjpijdijðX Þ, (1)

where si is a weight positive factor that measures the ‘‘power’’ of the i-actor and dijðX Þ is the ‘‘distance’’ from i

to j in configuration X which is 0 if i and j both belong to the same coalition and 1 when they are in a different
coalition. This model has only two possible coalitions, and thus it is called a bimodal coalition system. By
defining pij40 when actors i and j tend to be allied and pijo0 otherwise, then it is postulated that the actual
configuration of the system is the one which minimizes the energy. The path followed by the system into the
coalition landscape space from an initial configuration, follows the direction of the greatest gradient of energy.
Once a minimum is reached the system does not change. The AB model has been applied to the study of both
the alliances of the Second World War and UNIX [1]. Galam [2] and Florian and Galam [3], however have
criticized the method by which the AB model was constructed, since the ground state is unstable due to a
massive degeneration. Galam has shown [3] that in case of bimodal coalitions (A and B), the AB model is
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totally equivalent to a finite size non-frustrated spin glass at zero temperature. Accordingly, configurations can
be expressed by the spin variables Zi, where the spin is þ1 if the actor i belongs to coalition A; and �1 if the
actor belongs to B. By rewriting the distances as dijðX Þ ¼

1
2
ð1� ZiðX ÞZjðX ÞÞ, the energy becomes

EðX Þ ¼ Er �
Xn

i4j

JijZiðX ÞZjðX Þ (2)

with

Er �
1

2

X
i4j

sisjpij ; Jij ¼
1
2
sisjpij , (3)

which is basically the ground state of a typic spin glass Ising model, given by the following Hamiltonian:

H ð2Þ ¼ �
XN

i4j

JijZiZj �
XN

i

hiZi, (4)

where the spin Zi at site i can be 1 or �1, with an extra magnetic field (hi) term. The coalition to which an agent
i belongs, is given by the value of the spin. The interaction between agents i and j is Jij : From historical,
cultural and economic experience, the interaction Jij favors cooperation if Jij40, conflict Jijo0; and
neutrality Jij ¼ 0. According to Galam, the interactions Jij between site i and j have the following form:

Jij ¼ ðJ
0
ij þ eiejCijÞ, (5)

where ei is a natural belonging parameter, i.e., a country has cultural, economic and historic ties to a certain
coalition. The epsilons ei take values þ1 for coalition A, �1 for B, and the value ei ¼ 0 marks no a priori
propensity or preference. The amplitude of the natural belonging is given by the parameter Cij. J 0ij is the
exchange parameter which is usually set as a constant �J 0 that sets the energy scale: As a result, all spins are
connected and the network contains all possible connections. Finally, the magnetic field term,

hi ¼ bibi (6)

measures the forces (like military or economic mechanisms) by which each coalition as a whole couples to the
orientation of a given actor expressed in terms of an external magnetic field. bi ¼ �1 represents the direction
of the magnetic force on actor i (towards A or B), while bi is the amplitude of this force.

In terms of these parameters, several scenarios are possible [4]: local coalitions (jJ 0ijj � Cij), global cold war
scenario (jJ 0ijj5Cij ) or unique leader, in which jJ 0ijj5Cij for the powerful leader coalition and jJ 0ijj � Cij for
the others actors that interact locally and with the leader.

However, in all of these scenarios the effect of three-body interactions are neglected although they are
very important. Let us consider the recent war in Iraq. To illustrate the point, we use a simplified model
of four actors: Iraq (Q), Israel (I), Muslim Coalition (M) and the United States (U). Countries of the European
Union are not considered here simply because they lead to essentially the same results as this simplified
model, so we decided to keep the simplest model with all the substantial features. In this model, the natural
belonging are,

Country ei

Q �1
I þ1
M �1
U þ1
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The main feature of this war, is the strong degree of natural belonging of I and U which leads to a big
parameter CU�I . In fact, one can make a table with a reasonable choice of interaction parameters Cij as
follows:

, (7)

where each entry of the table is the propensity between two given countries. CF ;CE and C are three
parameters that have a hierarchy: CF4CE4CbjJ 0ijj (such interactions are shown in Fig. 1a)). Using these
tables, we found the ground state of the Hamiltonian H ð2Þ with many different settings of the parameters, and
for all the resulting coalitions, the minimal energy predicts that I enters into the war allied with U, against M

and Q. For example, it is easy to show by using an effective spin ti ¼ eiZi that the minimal energy corresponds
to a coalition determined by the natural belongings in which U and I are in coalition A, and M and Q in
coalition B. The corresponding ground state has an energy E

ð2Þ
0 ¼ �ðCF þ 3CE þ 2CÞ: The only relevant

change in the solution, is achieved by assuming that a strong leader, like U, has a huge magnetic field, bb1;
that enforces M to enter into a coalition with U :

In spite of these calculations, in the real war, Muslims and Israel stayed as neutral countries. Even more
impressive, in the 1991 Gulf war, Iraq sent missiles to Israel, which remained neutral. Within the H ð2Þ model,
to account for the possibility of neutrality of I and M, we need to compare the minimal energy of the previous
network with the case in which M and I are disconnected (see Fig. 1b). In a scenario of strong enemies and
friendships, assuming all CijbJ 0, the solution with neutral M and I has energy E

ð2Þ
0;U�Q ¼ �CE . Since CF4CE

is clear that E
ð2Þ
0 oE

ð2Þ
0;U�Q; so the best solution is to keep all countries fighting. Why this result was not

observed? The answer is that in principle, one should use a three state Hamiltonian, like a Potts model, since
coalition forming is no longer bimodal. However, this eludes the deep question: why the interaction leads to
neutrality of some actors when the best solution seems to be a fight?

The main reason is the three-body interaction, and the associated damages due to war. If I goes into the
coalition with U, the reaction of M will be very strong against U. Thus, the interaction between U and M

depends also on I. In terms of the original idea of ‘‘distances between countries’’, if the distance X between two
of them is reduced, the other distance is increased.

ARTICLE IN PRESS

Fig. 1. (a) Simplified network of the Iraq war. Strong friendship (CF ) is represented by three lines, strong enemy (CE) by two lines, and

enemies (friends) with weak interaction by a solid (dashed) line (C); (b) the same network with neutral M and I.
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3. Three-body interactions

From the previous discussion, is clear that we need to modify the spin models to include the three-body
interaction. Since two-body models still capture many of the ingredients of the coalition forming process, the
three-body interaction can be introduced as an extra Hamiltonian H ð3Þ to the original one H ð2Þ,

H ¼ H ð2Þ þ aH ð3Þ, (8)

where a is a parameter that measures the magnitude of the three-body effects. The most simple form of the
perturbation is

H ð3Þ ¼
XN

i;j;k

tijk

3
ZiZjZk, (9)

with a coupling parameter tijk for each triangle of actors i, j and k that occurs in the lattice. The parameters are
given by

tijk � gijkJijJjkJki, (10)

where gijk is the magnitude of the conflict or damage associated with a three-body interaction. However, this
simple Hamiltonian has to be modified to include the main ingredients of the three-body interactions:

(a) When three actors interact between them forming a triangle, a conflict arises if two actors do not have
the same natural belongings, given by their corresponding ei’s. We call this a natural conflict. As a result, the
energy must be increased. For example, when the triangle U, M and I is formed, a natural conflict arises due to
their different natural belongings. Eq. (9) can be fixed by using a function that is zero when all actors in a
triangle have the same natural belongings, and one in any other case. The corresponding Hamiltonian is,

H ð3Þ ¼
XN

i;j;k

tijk

3

3� jei þ ej þ ekj

2

� �
ZiZjZk. (11)

(b) If a natural conflict appears in a triangle, the increase in energy depends upon the relative configuration
of spins. But note that in Eq. (9), the Hamiltonian is not invariant against the same relative orientation of the
spins. For example, the energy of the state Zi ¼ Zj ¼ Zk ¼ 1; is not the same as the one obtained from
Zi ¼ Zj ¼ Zk ¼ �1; although both states have the same relative orientation between them (all parallel). This
problem is solved by using the absolute value function

H ð3Þ ¼
XN

i;j;k

jtijkj

3

3� jei þ ej þ ekj

2

� �
jZiZjZkj. (12)

Since Zi ¼ �1, jZiZjZkj ¼ 1, it follows that

H ð3Þ ¼
XN

i;j;k

jtijkj

6
ð3� jei þ ej þ ekjÞ. (13)

(c) However, in a natural conflict, one can imagine three configurations: either all actors are in the same
coalition (all spins up or down), two actors are allied against the third one, or an actor prefers to ‘‘break’’ the
triangle and stays neutral by leaving the network. We need to assign a penalty in energy for each of these
situations. In the case of the real Iraq war, the system is more stable when the triangle is broken, instead of
trying to build an artificial coalition or a fight. This is the less costly solution, but the penalty is automatically
taken into account by jtijkj; which is zero when the triangle is broken. The next penalty occurs when
Zi ¼ Zj ¼ Zk; the conflict is solved by an artificial coalition. To assign such penalty with energy W 1, let us first
introduce an auxiliary function f 1ðZi; Zj ; ZkÞ, with value one when all actors are in the same coalition, and zero
in the other case,

f 1ðZi; Zj ; ZkÞ ¼
jZi þ Zj þ Zkj � 1

2

� �
. (14)
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When two of the actors are in the same coalition and the other is an enemy, we use a function f 2ðZi; Zj ; ZkÞ

which one if two actors are in the same coalition and zero in the other case,

f 2ðZi; Zj ; ZkÞ ¼ 1� f 1ðZi; Zj ; ZkÞ ¼
3� jZi þ Zj þ Zkj

2

� �
. (15)

An energy penalty W 2 is assigned when f 2ðZi; Zj ; ZkÞ ¼ 1. Therefore,

H ð3Þ ¼
XN

i;j;k

jtijkj

6
ð3� j�i þ �j þ �kjÞ ð16Þ

�½W 1f 1ðZi; Zj ; ZkÞ þW 2f 2ðZi; Zj ; ZkÞ�. ð17Þ

Finally,

H ð3Þ ¼
dW

6

XN

i;j;k

jtijkjð3� j�i þ �j þ �kjÞjZi þ Zj þ Zkj þ Eð3Þr , (18)

where dW ¼ ðW 1 �W 2Þ=2, and Eð3Þr is a shift of the energy that only depends on the number of triangles with
natural conflicts,

Eð3Þr ¼
XN

i;j;k

jtijkj

6
ð3� j�i þ �j þ �kjÞ

3W 2 �W 1

2

� �
. (19)

The effect of H ð3Þ is to increase the energy of triangles for which a natural conflict is present. If a coalition is
artificially set in, it has a penalty W 1, while if the natural conflict is solved by fighting against the common
enemy, the penalty is W 2. In Fig. 2, we present the evolution with a of the states with lower energy for the case
of the Iraq war with jJ 0ijj ¼ 0, using all jtijkj ¼ CijCjkCki, CF ¼ 10;CE ¼ 3;C ¼ 1; for all i, j, k, W 2 ¼ 1 and
W 1 ¼ 0: The condition W 1 ¼ 0 imply no extra cost if a coalition is artificially set. Since H ð3Þ does not change
the energy of states with triangles of actors in the same coalition, the corresponding energy of such states is not
affected by a; as observed in Fig. 2. In other words, in the presence of strong three-body effects, the solution

ARTICLE IN PRESS

Fig. 2. Evolution of the states with lowest energy as a function of a, for the Hamiltonian H with CF ¼ 10;CE ¼ 3;C ¼ 1; jJ 0ij j � 0;
dW ¼ �1

2
; b ¼ 0: The ground state is shown with stars, while the first, second and third excited states are shown with filled triangles,

squares and circles, respectively. The lowest energy solution of H ð2Þ with I and M neutral (E ¼ �3) is also shown with diamonds, while the

first excited state is shown with open circles. The ground states of H and Hð2Þ with I and M neutral, are indicated with arrows; they join

each other at aC .
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can be interpreted as ‘‘not to fight’’, which is a first interesting effect, akin to a clustering effect observed in the
Potts model [16].

To get further understanding of how the Hamiltonian works, consider the case of small a. The eigenenergies
are obtained by taking the expectation value of H ð3Þ in a state jFi of H ð2Þ; with energy Eð2Þ;

E � Eð2Þ þ hFjH ð3ÞjFi (20)

and

hFjH ð3ÞjFi ¼
adW

6
2
X
D

jtijkj þ 6
X
D0
jtijkj

 !
þ aEð3Þr , (21)

where D is a sum over all conflicts with two actors in one coalition, and D0 is a sum over natural conflicts with
actors in the same coalition. hFjH ð3ÞjFi produces different energy shifts for different states.

To test our modified model, it is necessary to compare the three-body case with the solution considering M

and I neutral. When M and I are neutral, there is only a bond with energy �CE and no triangles appear. The
solution with H ð3Þ can have much more energy because there are 4 triangles with natural conflicts. The ground
state E0 � E

ð2Þ
0 þ F0jH

ð3ÞjF0

� �
with all countries involved is

E0 � E
ð2Þ
0 þ

adW

3

X
D

jtijkj

 !
, (22)

The case of M and I neutral is favorable when

E
ð2Þ
0 þ

adW

3

X
D

jtijkj4� CE , (23)

that leads to a condition for the parameter a,

a4
3

dW

CF þ 2CE þ 2CP
Djtijkj

� �
, (24)

and for this particular case,X
D

jtijkj ¼
X
D

CijCjkCki ¼ CEðCF þ CÞðCE þ CÞ. (25)

If this result is applied to predict the a in which there is a crossing between the solution with neutral countries
and the three-body case, the value aC ¼ 18=44 ¼ 0:409 . . . is obtained for the set of parameters used in Fig. 2.
This value agrees with the crossing of the three-body and M–I neutral solution, which is an horizontal line at
E ¼ �CE ¼ �3 in Fig. 2. In fact, we can get further insights on the nature of the solution in the general case,
by supposing that CFbCEbC from where

aC �
3

dWC2
E

1þ 2
C

CF

þ 2
CE

CF

� �
�

3

dWC2
E

. (26)

This result means that the three-body interaction basically leads to war when the conflicts are small compared
with the biggest friendship, since CE ! 0; aC !1: If CE ! CF , we have that

aC !
9

dWC2
F

. (27)

For a big friendship, the limit is aC ! 0. This leads to the neutrality of some actors, because the crossing
between solutions is located at a smaller a. In other words, if the conflict grows compared with the biggest
friendship, neutrality is preferred by some actors, as observed in the real war. One could cite here the former
secretary of US defense D. Rumsfeld in 2003, that the governments of Cuba, Lybia and Germany made clear
that they will not send troops to Iraq.
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4. Potts model

In this section, we show that the procedure presented previously, can be used for the Potts model, for which
it is possible to have more than two coalitions. This allows to treat the case of neutrality without changing the
connectivity of the network. In that sense, it is a more realistic model. The cost function associated with the p-
state Potts model is given by [16]

H
ð2Þ
Potts ¼ �

XN

ioj

JijðpdsðiÞ;sðjÞ � 1Þ, (28)

where the sðiÞ Potts states can take the 0; 1; 2; . . . ; p� 1 values. The sum is extended over all NðN � 1Þ=2 pairs,
with dm;n ¼ 1 if m ¼ n and dm;n ¼ 0 otherwise. To simplify the presentation, let us consider the case p ¼ 3, in
which sðiÞ ¼ 1 for i in the coalition A, and sðiÞ ¼ 2 when i belongs to coalition B: The agent or country i is
neutral when sðiÞ ¼ 0: This three-state model allows a country to chose between coalitions A, B or neutrality.
This model has been studied in the context of two-body interactions. To construct the three-body term H

ð3Þ
Potts,

we follow the same path outlined in the previous section. First we identify all the triangles with a natural
conflict. This is done by considering the propensities as in Eq. (11),

H ð3Þ ¼
XN

i;j;k

jtijkj

3

3� jei þ ej þ ekj

2

� �
f ðsðiÞ; sðjÞ;sðkÞÞ, (29)

where f ðsðiÞ;sðjÞ; sðkÞÞ is a function not yet determined. This function must reflect the costs assigned to solve
the natural conflict in different ways as follows:

(a) An artificial coalition can be set in with a cost W
p
1: In this case, all spins are in the same direction, thus,

the first contribution to f ðsðiÞ;sðjÞ; sðkÞÞ has the form dsðiÞ;sðjÞdsðiÞ;sðkÞdsðjÞ;sðkÞ. This combination is one when all
of the countries are in the same coalition and zero otherwise. However, if the three countries are neutral, is
clear that there is no conflict, although the spins are the same. To account for this, we multiply the previous
function by a factor that is zero when the three countries are neutral, so f ðsðiÞ; sðjÞ; sðkÞÞ has a contribution
given by

W
p
1dsðiÞ;sðjÞdsðiÞ;sðkÞdsðjÞ;sðkÞðdsðiÞ;1 þ dsðiÞ;2Þ. (30)

(b) Two countries are in the same coalition, and the third one can be in the opposite coalition or neutral.
Since neutrality does not have any associated three-body cost, we only need to worry for the case in which the
third is in the opposite coalition. A cost W

p
2 is assigned to this state, with a function that is one when two spins

have the value 1 or 2 while the other third spin is in the opposite coalition,

W
p
2

ðdsðiÞ;1 þ dsðiÞ;2ÞðdsðjÞ;1 þ dsðjÞ;2ÞðdsðkÞ;1 þ dsðkÞ;2Þ

�dsðiÞ;sðjÞdsðiÞ;sðkÞdsðjÞ;sðkÞðdsðiÞ;1 þ dsðiÞ;2Þ

" #
. (31)

Finally,

f ðsðiÞ;sðjÞ;sðkÞÞ ¼
ðW

p
1 �W

p
2ÞdsðiÞ;sðjÞdsðiÞ;sðkÞdsðjÞ;sðkÞðdsðiÞ;1 þ dsðiÞ;2Þ þW

p
2ðdsðiÞ;1

þdsðiÞ;2ÞðdsðjÞ;1 þ dsðjÞ;2ÞðdsðkÞ;1 þ dsðkÞ;2Þ

" #
. (32)

The analysis of the resulting Hamiltonian is similar to the one presented for the Ising case. The results are also
similar, i.e., in the case of strong conflicts, some actors remain neutral.

5. Conclusions

In conclusion, we have shown that three-body effects are important in a coalition forming system. Then, a
modified Hamiltonian was presented to take into account the three-body interactions in a conflict. The
Hamiltonians are obtained by adding an extra term to the Ising or Potts models. Such Hamiltonians predict
interesting effects, as for example, which are the limits of friendship. It is worthwhile mentioning that here we
only considered three-body effects due to triangles of actors. However, is clear that not all three-body effects

ARTICLE IN PRESS
G.G. Naumis et al. / Physica A 379 (2007) 226–234 233



Aut
ho

r's
   

pe
rs

on
al

   
co

py

arise in triangles as a first instance. An actor can modify the interaction of two others just by indirect influence.
The best example are gossips, in which a third person can affect a relation between two others. In spite of this,
one can always renormalize the interaction in order to get an effective triangle. We are aware that our model is
very simple but we hope that this work will stimulate further research of three body effects in social systems.
These effects are real and very important, thus, the value of this work is to make people aware that three or
more many body effects must be included for a better description of most systems.
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