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Use of the trace map for evaluating localization properties

Gerardo G. Naumis
Instituto de Fı´sica, Universidad Nacional Auto´noma de Me´xico (UNAM), Apartado Postal 20-364, 01000, Distrito Federal, Mexico

~Received 4 September 1998; revised manuscript received 9 November 1998!

The use of Lyapunov exponents for evaluating localization lengths of wave functions in one-dimensional
lattices is discussed. As a result, it is shown that it is more practical to calculate this length by using the scaling
properties of the trace map of the transfer matrix. This leads to a relationship between localization and the fixed
points of the map, which is considered as a dynamical system. The localization length is then defined by a
Lyapunov exponent, used in the sense of chaos theory. All these results are discussed for periodic, disordered,
and quasiperiodic chains. In particular, the Fibonacci quasiperiodic chain is studied in detail.
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I. INTRODUCTION

Much work has been devoted to study the localization
waves, following the seminal work by Anderson,1 and the
subsequent intensive research in the field of disorde
materials.2 At present, there exist several different criteria
evaluate when localization occurs, and how to measure
although many of these criteria are not rigorously prove3

Furthermore, with the advent of the intensive use of co
puter calculations, it is clear that these criteria must
adapted to extrapolate conclusions from finite to infinite s
tems. One of the most dramatic pieces of evidence of
fact was found after the discovery of quasicrystals in 1984

Quasicrystals present a peculiar kind of order: despite la
ing translational order, the positions of the atoms are
arbitrary, as in an amorphous solid, but precisely determin
Thus, neither of the methods developed to deal with crys
or amorphous apply to this case. One could approxima
quasicrystal by a crystal, with a large unit cell. However, s
there is no consensus about the nature of the spectrum
wave functions, since quasiperiodic systems present ano
lous dependences on the system size.5

In one-dimensional systems~1D!, the transfer matrix for-
malism has been very useful to determine the spectrum
to describe the propagation of waves as they travel ac
periodic, disordered, and quasiperiodic lattices. Within t
method for a tight-binding Hamiltonian, the spectrum
found by using the trace of the transfer matrix. This is e
tremely successful in the field of 1D quasicrystals, sin
Kohmoto, Kadanoff, and Tao6 found a recurrence relatio
for the trace of a Fibonacci chain.6 This relation defines a
trace map, from which the spectrum can be found by suc
sive iterations. After its introduction, this technique has p
duced many interesting results concerning the nature of
spectrum for diverse quasiperiodic systems, such as
period-doubling7 and Thue-Morse8 chains. More recently
this formalism has been extended to aperiodic systems w
the complexity of the transfer matrix makes such a form
ism particularly involved.9

Since the trace is a powerful tool for determining t
spectrum, one is lead to ask if it is possible to use it in or
to investigate localization. In this paper, this question is
swered by finding expressions that relate the localization
PRB 590163-1829/99/59~17!/11315~7!/$15.00
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waves with the properties of the trace map, considered in
sense of a dynamical system. Furthermore, this way to inv
tigate localization is much more efficient than the use of
Lyapunov exponents of the wave functions,10 since this
method presents some problems in practice, as we shal
in Secs. II and IV. The results presented in this paper a
show that the stability properties of the trace map and th
related Lyapunov exponents~used in the sense of chao
theory! are suitable tools to classify the nature of eigensta
in extended, critical, and localized, and thus must be refer
as a diagnostic tool for localization.11

The structure of the paper is as follows. In Sec. II t
formalism of the transfer matrix is introduced, and the pro
lems of the Lyapunov exponents are discussed. In Sec.
the relation between the localization length, scaling of ban
and the stability of trace map is discussed. Section IV
devoted to show two applications of the concepts develo
in Sec. III: a periodic chain with an impurity and a Fibonac
chain. Finally, in Sec. V the conclusions are given.

II. TRACE MAPS AND THE LYAPUNOV EXPONENTS

In one-dimensional systems, the tight-binding Ham
tonian is very appropriate to describe electron and pho
propagation. Thus, this kind of Hamiltonian will be use
through all the article, although most of the conclusions c
be applied to other Hamiltonians. The Schro¨dinger equation
for a 1D tight-binding Hamiltonian, defined on a chain ofn
sites, with an on-site potentialVn at site n, and hopping
integral tn between sitesn andn11 is

tncn211tn11cn111Vncn5Ecn , ~1!

wherecn is the value of the wave function at siten. Usually,
for this equation two cases are considered: the on-site
diagonal problem, wheretn is a constant that does not de
pend on the site, and the off-diagonal, whereVn is the same
for all sites. In this paper, both cases are considered,
though in the applications we will study the on-site for sim
plicity.

As is well known, Eq.~1! can be rewritten in terms of the
transfer matrixM (n),
11 315 ©1999 The American Physical Society
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11 316 PRB 59GERARDO G. NAUMIS
Cn5S ~E2Vn!/tn 2tn21 /tn

1 0 D Cn21[M ~n!Cn21 ,

~2!

whereCn stands for

Cn5S cn

cn21
D . ~3!

A successive application of Eq.~2!, gives the wave function
at siten as a function of the value at the beginning of t
chain

Cn5M ~n!M ~n21!M ~n22!M ~n23!•••M ~2!C1

[T~n!C1 . ~4!

The allowed values for the energies are those for which
norm of trace of the matrix@tn[trT(n)# is less than 2.12

Furthermore, in many cases one can obtain a recurrenc
lation of the type

tn5 f ~tn21 ,tn22 ,tn23 , . . . ,tn2 j !, ~5!

which allows us to compute the spectrum without calculat
the full product of matrices, and thus reduces the comple
of the problem. Such a relation is a trace map. Our aim is
use this map to determine the nature of localization in
chain.

A starting point toward this goal is to use a parameter
characterizing the localization of a wave function. Usually
parameter to estimate the growth of the wave function as
excitation goes along the chain is the Lyapunov expon
defined as10,12

g~E![ lim
n→`

gn~E![ lim
n→`

1

n
lniT~n!i , ~6!

where the normiT(n)i is

iT~n!i5supiT~n!Ci /iCi . ~7!

In the last definition,C is any vector that maximizesiT(n)i .
In the case of exponentially localized functions,g(E) is the
inverse of the localization length (j), sinceiT(n)Ci;en/j.
The growth of the wave function is determined by the gre
est eigenvalue of the transfer matrix,13 denoted bylmax,

g~E!5 lim
n→`

1

n
lnulmax.u. ~8!

The next step is to obtain this maximum eigenvalue ofT(n)
using the characteristic equation ofT(n)

det@l2T~n!#5l22ltn1150, ~9!

where we used that the determinant of the transfer matri
one, since it is the product of matrices with the determin
one. By solving Eq.~9! we found the two eigenvalues o
T(n),

l65
tn6Atn

224

2
. ~10!
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For energies which satisfiesitni.2, the eigenvalues are
real and the Lyapunov exponent is

g~E!5 lim
n→`

1

n
ln~ utnu1Atn

224!. ~11!

Inside the spectrumitni<2, l6 are complex, both with
unitary norm, and thus the Lyapunov exponent is zero, si
iT(n)i is always 1. At first sight, it seems to be strange th
for states inside the spectrum the Lyapunov exponent is z
whatever the shape of the wave function, since for a loc
ized state we would like to find its corresponding localizati
length.

The solution to this problem is related with the Borlan
conjecture,14 and to the appearance of bands when using
transfer matrix even for isolate eigenvalues. In order to
plain this point, let us consider the problem of an impurity
a periodic linear chain~we set V05d and Vn50,nÞ0,tn
5t). As is known, the spectrum of this chain is the origin
band of the periodic chain~the set22<E<2), plus a local-
ized impurity mode atEc5A41d2.3 How can we obtain the
localization length of this mode from the transfer matrix?

Quite generally, in the method of the transfer matrix,
we put an excitation at the left of the chain in a spectral g
of the periodic chain, the excitation grows exponentially w
a speed determined by the greatest eigenvalue of the tra
matrix, unless we start with a vector that corresponds to
lower eigenvalue eigenvector; in such a case the excita
decreases. Now, if we traverse the chain from right to le
we obtain the opposite result, since the excitation gro
from right to left.10 At first sight, this seems quite paradox
cal for the impurity mode, because we need to satisfy fix
boundary conditions at both ends of the chain, with a ma
mum at the impurity site.

The solution to this problem is that the growing solutio
from left to right, is the same that decreases from right
left.14 For an energy that corresponds to an eigenvalue of
whole chain, the excitation can be matched at the impur
site to satisfy the boundary conditions on both sides of
chain.14 This matching is achieved by making zero the gro
ing solution at the impurity site.

Thus, if we define the Lyapunov exponent only in o
half of the chain@g6(E)#, from the left~right! of the impu-
rity site, the Lyapunov exponents are given by

g6~Ec![ lim
n→6`

ln
1

n
iT~n!i5 lnS uEcu1AEc

224

2
D , ~12!

but if we consider the whole chain, the exponent is ze
since the excitation does not grow in order to satisfy
boundary conditions. This is in agreement with the previo
result which showed that, whenever we have an allow
state,g(E) of the whole chain is zero.

Figure 1 illustrates this point. The Lyapunov exponent
the whole chain~solid line! and half of it~dashed line! when
d51.5(Ec52.5) are shown. Calculations were carried o
using the norm of the product of successive transfer matr
for a given initial excitation. The Lyapunov of half of th
chain gives the correct localization length, while the cor
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PRB 59 11 317USE OF THE TRACE MAP FOR EVALUATING . . .
sponding to the full chain has a pronounced dip that
proaches zero at the energy that corresponds to the imp
mode.

The problem with this method is that we need to know
advance where the maximum of the wave function is, a
then proceed to study the Lyapunov exponent. Clearly
many cases this information is difficult to obtain, so t
method is hard to apply. However, as we shall see in the n
section, the problem can be avoided by using the scalin
the spectrum bandwidth.

III. LOCALIZATION AND STABILITY
OF THE TRACE MAP

A. Scaling of bands

A second approach toward the use of the trace map
diagnostic tool, is to adapt a qualitative argument similar
the one introduced by Thouless15 and Sire16 in the localiza-
tion problem to explain the scaling of bands. Conside
piece of chain withn sites. For the moment we do not ca
about its internal structure, which may be periodic, dis
dered, or quasiperiodic. Now we construct a crystal by
periodic repetition of the chosen piece, which acts as an
tary cell of this crystal.

Let us first consider that the cell is also a crystal.
usual, the width of the band (Wn) of this crystal isWn
;tn . This width also can be seen as the overlap between
similar statesuc1& anduc2& at two contiguous unit cells. This
overlap is given by

Wn;^c1uHuc2&;tn , ~13!

where it was assumed that the fact that extended states d
decrease withn, and thus their overlap isn independent. This
shows that the size of the band is clearlyn independent.

Next, we consider that the unit cell is disordered, w
eigenstates that are exponentially localized with a len
j(n@j). The overlap leading toWn is then of the order,

FIG. 1. Lyapunov exponents for a periodic chain with an imp
rity (d51.5, Ec52.5) near the upper band edge. The solid li
corresponds to the exponents of the whole chain, while the e
nents calculated by dividing the chain in 2 are shown by do
Observe the pronounced dip of the Lyapunov at the impurity mo
which gives a value similar to the states inside the band of
periodic chain~energies from 1 to 2 in the figure!.
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Wn;,c1uHuc2.;tne2n/j, ~14!

due to the decay of the wave function. Here the band wi
depends onn, i.e., the band-width is reduced exponentia
as n→`. Thus, it is natural to define the inverse of th
localization length as

gn~E![
1

j
5 lim

n→`

2
1

n
lnS Wn

tn
D . ~15!

When the cell is a quasicrystal, the wave functions
critical ~self-similar in real space! and scale with an exponen
b(E,n) as uc(n)u;n2b(E,n). This leads to an overlapping
and a bandwidth scaling with the size of the system asWn

;tn22b(E,n). From Eq.~15!, limn→`gn(E)5b(E,n)ln(n)/n
50. In this case, however, much more information can
obtained if we define an scaling exponent through

b~E!5 lim
n→`

2
ln~Wn /tn!

ln~n!
, ~16!

which remains finite for power law-localized states. Obse
thatb(E) has the form of a fractal dimension. In general, w
can expect small oscillations ofb(E) as the system size
increases, since critical states can display a multifra
nature.17–20

B. Stability of the trace map

Once the relation between localization and band width
established, the scaling properties of the bands are ea
found from the trace map, sinceWn is determined by the
energies that are the roots oftn

2(E)2450, which also sat-
isfies

dtn
2

dE
Þ0, ~17!

in order to assure that the trace crosses the line defined
or 22 ~observe that sometimes in this article we will co
sider the square of the trace, instead of the trace, in orde
avoid making differences between the points 2 and22). If
we arrange the band edges in decreasing order~denoted by
Ei

n), the width of each band isWi5(E2i
n 2E2i 21

n ).
For those energies that are in the spectrum ofHn , the

inverse localization length of these states can be estim
using Eq.~15!,

gn~E!5 lim
n→`

2
1

n
lnS E2i

n 2E2i 21
n

tn
D

5 lim
n→`

2
1

n
ln@tn,2i

21 ~62!2tn,2i 21
21 ~62!#.

In the last step it was assumed thatE2i
n 5tn,2i

21 (62), where
tn,2i

21 is the branch 2i of the inverse oftn , and thattn does
not grow faster thann. Due to Eq.~17!, at the pointsE2i

n , we
must require that the derivative oftn,2i

21 must be finite.
Using all these facts, we can classify the localizati

properties in terms of the trace map. We start by conside
the case of a band of extended states. In the previous
section, we showed that the band width does not depend
the system size. Then,tn(E2i

n )562,tn(E2i 21
n )562 are

-
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.
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11 318 PRB 59GERARDO G. NAUMIS
fixed points of the trace map, since the trace remains fixe
the map is iterated. These fixed points have the follow
property, if we start to iterate the map with an energy tha
close toE2i

n but inside the band (E2i
n 2«), thentn(E2i

n 2«) is
bounded since the band width is constant, but to the o
side ofE2i

n , the corresponding orbit of the map is unbound
becauseg(E2i

n 1«) is positive defined outside the ban
These kinds of fixed points are called saddle points.

Around a localized eigenstate (Ec), the band shrinks in an
exponential way, which means that iftn(E2i

n )562, after
some steps of growth of the chain,E2i

n must lie outside of the
band. Thus, the only point that satisfiesutn(E)u,2 whenn
goes to infinity is Ec because, for small«, and n large
enough,utn(Ec1«)u.2. Any deviation of the initial condi-
tions, t1(Ec),t2(Ec), . . . , of thetrace map, will eventually
diverge exponentially as we iterate the trace map. Thus
exponential state corresponds to an unstable fixed poin
the trace.

The width of the band can be estimated by making
Taylor expansion of the trace, or even better, the square o
to simplify the number of cases under consideration. T
expansion is

45tn
2~E2i

n !.tn
2~Ec!1

1

2 S Wn

2 D 2Fd2tn
2

dE2 G
E5Ec

, ~18!

where it was used that the first derivative is zero atE5Ec ,
and thatWn.2(Ec2Ei

n).
The inverse localization length is then obtained using

~15!, whenn→`,

gn~E!5 lim
n→`

1

2n
lnUFd2tn

2

dE2 G
E5Ec

U . ~19!

This general formula can be reduced in the cases w
tn

2(Ec)50 ~this is the case of a linear chain with an impurit
as we shall see in the next section! to get

gn~E!5 lim
n→`

1

n
lnUFdtn

dE G
E5Ec

U . ~20!

The sensitivity to the initial conditions of the trace ma
can be also characterized by its Lyapunov exponents, no
the sense used inchaos theoryfor the study of dynamica
systems. This exponents are defined as21

s~E!5 lim
n→`,«→0

1

n
lnUtn~E1«!2tn~E!

« U, ~21!

which measures how different the orbits of two different b
very close initial conditions are, as they are iterated by
map. If we compare last equation with Eq.~20!, it is clear that
they are equal. Then, the inverse localization length is gi
by the Lyapunov exponent of the trace map, used in the s
sense of chaos theory.

Quasiperiodic chains are much more difficult to stud
because the change of the band width is usually achieve
the apparition of new gaps as the system size grows. T
mechanism is similar to that used in the generation of a C
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tor set. However, even in these cases the band width all
us to obtain useful information of localization. As an e
ample, we can cite the reduction of nearly all bands in
Fibonacci chain with an impurity, due to the apparition
many localized states inside the original spectrum.22–24

When the band width is reduced with the scaling by t
opening of new gaps, this means that there is a cascad
pointsEi

n as the system grows, i.e., the number of preima
of tn562 grows withn. Observe that in order to have th
behavior, the trace map must be nonlinear. In such maps
orbit of the trace for the band edges can be periodic
bounded aperiodic.6

An estimate of the scaling of wave functions is given
using Eq.~16! and a Taylor expansion around a pointEc
inside the band, with the property that the first derivative
the square of the trace is zero on it~between the two band
edges, there is always a point that satisfies this conditi!.
According to our definition~16!, the scaling exponent is

b~E!5 lim
n→`

2
lnu@d2tn

2/dE2#E5Ec
u

ln~n!
. ~22!

Before finishing this section, we would like to mentio
that the stability of the trace can also be useful to expl
some properties of gap states, where the states sa
itn(E)i.2. The connection with the stability is found b
taking the derivative of Eq.~11! with respect to the energy

gn
8~E![

dgn~E!

dE
5

1

n F sgn~tn!

Atn
224

Gdtn

dE
. ~23!

From this last equation it is clear that whenever the deri
tive of the trace map with respect to the energy is zero,
obtain a critical point for the Lyapunov exponent. We w
denote these critical points byEi* . The nature of these point
is obtained by the sign of the second derivative.g(Ei* ) is
maximum ~minimum! when sgn(tn)@d2tn /d2E#E5E

i*
is

negative~positive!. In both cases, the Lyapunov expone
has a parabolic shape around these critical points,

g~E!.g~Ei* !1g9~Ei* !~E2Ei* !2. ~24!

But if (dtn /dE)50, then, for a small perturbation« around
the critical pointEi* , tn(Ei* 1«).tn(Ei* ) and thus the trace
map @see Eq.~5!# must be nearly insensitive to the initia
conditions atEi* . In the next section, we will show an ex
ample where the Lyapunov exponents of the gaps states
parabolic due to the existence of fixed points in the map

IV. APPLICATIONS

A. Periodic chain with an impurity

In this subsection, we solve the same problem conside
in Sec. II, i.e., the on-site problem in a periodic chain with
impurity (V05d.0, and, Vn50,nÞ0,tn51.0); but using
the trace for calculating the localization length. For t
present case, the trace of the total transfer matrix for a ch
of n11 sites~with n even! is given by
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tn115 tr~Mn/2DMn/2!

5 trF S E 21

1 0 D n/2S E2d 21

1 0 D S E 21

1 0 D n/2G ,
~25!

where M is the transfer matrix which corresponds to sit
whereVn50, andD is the matrix at the impurity site. This
expression can be evaluated by using the cyclic propertie
the trace, and a matrixU that makes a unitary transformatio
which diagonalizesM,

tn115 tr@~UMU21!nUDU21#

5
1

AE224
tr F S l1~E! 0

0 l2~E!
D n

3S ~E2d!l1~E!22 2d/l2~E!

2d/l1~E! 2~E2d!l2~E!12D G ,
~26!

wherel6 are the eigenvalues ofM

l6~E!5
E6AE224

2
. ~27!

Finally, the trace is given by

tn115@l1~E!#n11S 12
d

AE224
D

1@l2~E!#n11S 11
d

AE224
D . ~28!

The spectrum is the set for whichutn11u is lower than 2,
asn goes to infinity. From Eq.~28!, this condition is satisfied
whenl6 is a complex number, and thus the set is the int
val @22,2#, which corresponds to the spectrum of a perio
chain. Outside this set,u@l1(E)#n11u goes to infinity when
E.0, sincel1 is real. However, ifd.0, there is an energy
for which

S 12
d

AE224
D 50, ~29!

and the trace is zero„@l2(E)#n11'0 for E.0, sincel2

51/l1…. From Eq.~29!, this energy corresponds exactly
the impurity mode (Ec5A41d2). Observe that for finiten,
there is always a band around this point. Such a band
natural consequence of thecontinuityof tn11(E). The exis-
tence of a band around the impurity mode for finiten is a
very important point, because it means that for finite lattic
the result is not the same as the one obtained from a d
diagonalization of the Hamiltonian, in which only one mo
is found. They are only equal in the infinite limit. This fa
also explains why the Lyapunov exponent is zero, beca
we have a continuous spectrum.12

Finally, the inverse localization length of the impuri
mode is found using Eqs.~20! and ~28!:
of

r-
c

a

,
ct

se

gn11~E!5 lim
n→`

1

n11
lnU H d

dEF @l1~E!#n11

3S 12
d

AE224
D G J

E5Ec

U
5 lnl1~Ec!. ~30!

This result is the same as the one obtained from Eq.~12!.

B. Fibonacci chain

Another interesting example of a typical quasiperiodic l
tice is the on-site problem in a Fibonacci chain. For th
chain, Khomotoet al. found a nonlinear trace map6 which
allows us to compute the spectrum in a powerful way. F
the on-site problem, Kohmotoet al. considered a chain in
which the self-energyVn has two valuesVL and VS which
are ordered by a Fibonacci sequence~the results for the off-
diagonal problem are similar6!. In such a case, the transfe
matrix at sites which are Fibonacci numbers@the Fibonacci
number of order l is defined as F( l )5F( l 21)1F( l
22),F(0)51,F(1)51] are given by a recurrence relation
which leads to the following trace map:

tF~ l !5tF~ l 21!tF~ l 22!2tF~ l 23! , ~31!

with t15(E2V1)/t,t05(E2V0)/t,t2152 as initial condi-
tions. Also, it is possible to give a geometrical interpretati
for the trace map, since the evolution of the trace can
visualized as a trajectory of the point (tF( l ) ,tF( l 21) ,tF( l 22))
in three-dimensional space. This trajectory occurs on a
face, because the map has an invariant~I! given by25

tF~ l !
2 1tF~ l 21!

2 1tF~ l 22!
2 2tF~ l !tF~ l 21!tF~ l 22!24

5~t12t2!25I . ~32!

In Fig. 2 we show the Lyapunov exponents of the g
wave functions in a Fibonacci chain, obtained using Eq.~11!
with VL51,VS50,t51 for a chain withl 54. The results

FIG. 2. Lyapunov exponents of a Fibonacci chain (VL51, VS

50, t51) at the gap energies. The dots correspond to the ex
nents of the transfer matrix norm, while the solid line correspon
to those exponents of the trace map.
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11 320 PRB 59GERARDO G. NAUMIS
calculated via Eq.~11! are similar to those obtained in othe
works26,27 using a direct evaluation of the norm of the pro
uct of matrices. The parabolic shape of the Lyapunov ex
nent at the middle of the spectral gaps are due to ener
where the trace map is nearly insensitive to the initial c
ditions. This fact can be clearly seen in Fig. 2, where
solid line shows the Lyapunov exponent of the trace m
used in the sense of chaos theory. The minima for this qu
tity occurs at the maximum ofg(E). Figure 2 also shows a
subtle point, the difference between the Lyapunov expone
of the wave function, compared with those exponents of
trace map. Note also that at the middle of the allowed en
gies wheregn(E) is constant, there is another fixed point
the trace, which corresponds to states at the middle of
allowed bands.

Figure 3 shows an application of Eq.~22! for a Fibonacci
chain, with the same parameters as those used in Fig. 2.

FIG. 3. Scaling exponents of a Fibonacci chain, withVL51,
VS50, t51, andl 54.
e

ys

,

-
ies
-
e
,

n-

ts
e
r-

e

he

points Ec are in the middle of the bands, wheretn(E)50.
Observe that states at the edges of the spectrum are
extended, while the states at the center are more exten
This is in agreement with the analytical results found
Kohmotoet al.6

V. CONCLUSIONS

In this article, localization in 1D was studied by using th
stability properties of the trace map. In that sense, the lo
ization lengths are mainly determined by the Lyapunov
ponents of the trace map, which are very practical, espec
when the trace can be obtained by recurrence relatio
These exponents have a different meaning than those de
from the norm of the transfer matrix, which have certa
problems in the practice.

Using the trace map, a dynamical system can be defin
and eigenstates are classified according with the propertie
the map: a localized eigenstate corresponds to energie
which tn(E) is a repulsive fixed point of the trace map; fo
an extended state, the band edgestn(Ei

n)562 are saddle
fixed points, and for critical states, the orbit oftn(E) is
periodic or bounded aperiodic. These critical states are
ways produced by nonlinear trace maps.

In these nonlinear maps, the structure of the spectrum
localization is due to the fractal structure of the attractor
of the trace map. This fact suggests the use of Feigenbau
renormalization theory28 to study quasiperiodic systems
This work is currently in progress.
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