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Use of the trace map for evaluating localization properties
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The use of Lyapunov exponents for evaluating localization lengths of wave functions in one-dimensional
lattices is discussed. As a result, it is shown that it is more practical to calculate this length by using the scaling
properties of the trace map of the transfer matrix. This leads to a relationship between localization and the fixed
points of the map, which is considered as a dynamical system. The localization length is then defined by a
Lyapunov exponent, used in the sense of chaos theory. All these results are discussed for periodic, disordered,
and quasiperiodic chains. In particular, the Fibonacci quasiperiodic chain is studied in detail.
[S0163-18299)05217-0

I. INTRODUCTION waves with the properties of the trace map, considered in the
sense of a dynamical system. Furthermore, this way to inves-

Much work has been devoted to study the localization oftigate localization is much more efficient than the use of the
waves, following the seminal work by Andersbrand the Lyapunov exponents of the wave functidfissince this
subsequent intensive research in the field of disorderefethod presents some problems in practice, as we shall see
materials> At present, there exist several different criteria toin Secs. Il and IV. The results presented in this paper also
evaluate when localization occurs, and how to measure i§how that the stability properties of the trace map and their
although many of these criteria are not rigorously proven.related Lyapunov exponent@ised in the sense of chaos
Furthermore, with the advent of the intensive use of comiheory are suitable tools to classify the nature of eigenstates
puter calculations, it is clear that these criteria must bdh extended, critical, and localized, and thus must be referred
adapted to extrapolate conclusions from finite to infinite sysaS @ diagnostic tool for localizatio.
tems. One of the most dramatic pieces of evidence of this The structure of the paper is as follows. In Sec. Il the
fact was found aﬁer the discovery of quasicrystals in l@84_f0rmalism of the transfer matrix is intrOd-uced, and the prOb-
Quasicrystals present a peculiar kind of order: despite lackems of the Lyapunov exponents are discussed. In Sec. lll,
ing translational order, the positions of the atoms are nothe relation between the localization length, scaling of bands,
arbitrary, as in an amorphous solid, but precisely determinec@nd the stability of trace map is discussed. Section IV is
Thus, neither of the methods developed to deal with crystalgevoted to show two applications of the concepts developed
or amorphous apply to this case. One could approximate & Sec. lll: a periodic chain with an impurity and a Fibonacci
quasicrystal by a crystal, with a large unit cell. However, stillchain. Finally, in Sec. V the conclusions are given.
there is no consensus about the nature of the spectrum and
wave functions, since quasiperiodic systems present anoma-
lous dependences on the system Size.

In one-dimensional systent&D), the transfer matrix for- In one-dimensional systems, the tight-binding Hamil-
malism has been very useful to determine the spectrum an@dnian is very appropriate to describe electron and phonon
to describe the propagation of waves as they travel acrogsropagation. Thus, this kind of Hamiltonian will be used
periodic, disordered, and quasiperiodic lattices. Within thisthrough all the article, although most of the conclusions can
method for a tight-binding Hamiltonian, the spectrum ispe applied to other Hamiltonians. The Safirger equation
found by using the trace of the transfer matrix. This is ex-for a 1D tight-binding Hamiltonian, defined on a chainrof
tremely successful in the field of 1D quasicrystals, sincesites, with an on-site potentiaf, at site n, and hopping
Kohmoto, Kadanoff, and T&ofound a recurrence relation integralt,, between sites andn—+1 is
for the trace of a Fibonacci chainThis relation defines a
trace map, from which the spectrum can be found by succes-
sive iterations. After its introduction, this technique has pro- 1T tasa¥nsa T Vathn=Eiy, @
duced many interesting results concerning the nature of the
spectrum for diverse quasiperiodic systems, such as the&herey, is the value of the wave function at siteUsually,
period-doublin@ and Thue-Mors® chains. More recently, for this equation two cases are considered: the on-site or
this formalism has been extended to aperiodic systems whegiagonal problem, wherg, is a constant that does not de-
the complexity of the transfer matrix makes such a formalend on the site, and the off-diagonal, wh¥feis the same
ism particularly involved. for all sites. In this paper, both cases are considered, al-

Since the trace is a powerful tool for determining thethough in the applications we will study the on-site for sim-
spectrum, one is lead to ask if it is possible to use it in ordeplicity.
to investigate localization. In this paper, this question is an- As is well known, Eq(1) can be rewritten in terms of the
swered by finding expressions that relate the localization ofransfer matrixM (n),

II. TRACE MAPS AND THE LYAPUNOV EXPONENTS
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(E-VIt, —t,_1/t, For energies which satisfids,|>2, the eigenvalues are
n= 1 0 v, =MW, _q, real and the Lyapunov exponent is
2 L
where ¥, stands for y(E)= lim ﬁln(| mlF\Ta—4). (12)
n—oe
Rz
W,= b 1) 3 Inside the spectrunj7,|<2, A, are complex, both with

unitary norm, and thus the Lyapunov exponent is zero, since
A successive application of E(), gives the wave function ||T(n)|| is always 1. At first sight, it seems to be strange that
at siten as a function of the value at the beginning of thefor states inside the spectrum the Lyapunov exponent is zero,

chain whatever the shape of the wave function, since for a local-
ized state we would like to find its corresponding localization
¥,=M(n)M(n-1)M(n=2)M(n=3)---M(2)¥, length.
—T(n)W,. 4) The solution to this problem is related with the Borland

conjecturet* and to the appearance of bands when using the
The allowed values for the energies are those for which th&ansfer matrix even for isolate eigenvalues. In order to ex-
norm of trace of the matriXr,=trT(n)] is less than 22  plain this point, let us consider the problem of an impurity in
Furthermore, in many cases one can obtain a recurrence ré-periodic linear chainwe setVy=4 and V,=0,n#0t,

lation of the type =t). As is known, the spectrum of this chain is the original
band of the periodic chaifthe set—2<E<?2), plus a local-
Tn=F(Tn—1,Tn-2,Tn=3, - - -, Tn—j)s (5)  ized impurity mode aE.= \/4+ 2.3 How can we obtain the

. : . localization length of this mode from the transfer matrix?
which allows us to compute the spectrum without calculating Quite generally, in the method of the transfer matrix, if

the full product of matrices, ?”d.thus reduces the CO”?F"‘?X'“(Ne put an excitation at the left of the chain in a spectral gap
of the problem. Such a relation is a trace map. Our aim is t

use this map to determine the nature of localization in %t the periodic chain, the excitation grows exponentially with

chain Y speed determined by the greatest eigenvalue of the transfer
A s;tartin oint toward this qoal is to use a parameter formatrix, unless we start with a vector that corresponds to the

ing p rathis g P lower eigenvalue eigenvector; in such a case the excitation

characterizing the localization of a wave function. Usually, a

arameter to estimate the growth of the wave function as thdecreases. Now, if we traverse the chain from right to left,
param growth fe obtain the opposite result, since the excitation grows
excitation goes along the chain is the Lyapunov exponen

defined ald12 from right to left2® At first sight, this seems quite paradoxi-
cal for the impurity mode, because we need to satisfy fixed
1 boundary conditions at both ends of the chain, with a maxi-
Y(E)= lim y,(E)= lim=In||T(n)|, (6) mum at the impurity site.

n—oo nooell The solution to this problem is that the growing solution
from left to right, is the same that decreases from right to
left.* For an energy that corresponds to an eigenvalue of the
whole chain, the excitation can be matched at the impurity

where the norn T(n)|| is

[T ()l =sup T(n) W/ @) site to satisfy the boundary conditions on both sides of the
In the last definition¥’ is any vector that maximizé(n)|.  chain!* This matching is achieved by making zero the grow-
In the case of exponentially localized functiongE) is the  ing solution at the impurity site.
inverse of the localization length), since|T(n) W]~ e"%. Thus, if we define the Lyapunov exponent only in one
The growth of the wave function is determined by the greathalf of the chair{ y..(E)], from the left(right) of the impu-
est eigenvalue of the transfer mattixgdenoted by .y, rity site, the Lyapunov exponents are given by
im +\E:—
Y(E)_Jﬂﬁlnp\maXJ- () y.(Ex)= lim In%IIT(n)H: |n(|EC|#), (12)
n— o
The next step is to obtain this maximum eigenvalud @f)
using the characteristic equation Bfn) but if we consider the whole chain, the exponent is zero
since the excitation does not grow in order to satisfy the
defA—T(n)]=A2—A7,+1=0, 9) boundary conditions. This is in agreement with the previous

) __result which showed that, whenever we have an allowed
where we used that the determinant of the transfer matrix iState ¥(E) of the whole chain is zero.

one, since it is the product of matrices with the determinant Figure 1 illustrates this point. The Lyapunov exponent of

one. By solving Eq.(9) we found the two eigenvalues of he whole chair(solid line) and half of it(dashed lingwhen
T(n), 6=1.5(.=2.5) are shown. Calculations were carried out
using the norm of the product of successive transfer matrices
o+ /7.2_4 . L. N
N, ==V (10 for a given initial excitation. The Lyapunov of half of the
* 2 ’ chain gives the correct localization length, while the corre-
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L0 ' ; ' W~ < i |H| > ~t e "¢, (14)

due to the decay of the wave function. Here the band width
depends om, i.e., the band-width is reduced exponentially

as n—o. Thus, it is natural to define the inverse of the

localization length as

08

0.6 -

Y(E)

=g im= vl ]
va(E)= —I|m—ﬁln?. (15

n—oo

|

04

When the cell is a quasicrystal, the wave functions are
critical (self-similar in real spageand scale with an exponent
B(E,n) as|y(n)|~n"AEM This leads to an overlapping
and a bandwidth scaling with the size of the systenWas

- : - ~tn~2AEN From Eq.(15), lim,_..yn(E)=B(E,n)In(n)/n
1.0 15 2.0 2.5 30 . . .
A =0. In this case, however, much more information can be

obtained if we define an scaling exponent through

FIG. 1. Lyapunov exponents for a periodic chain with an impu-
rity (6=1.5, E;=2.5) near the upper band edge. The solid line . In(W,/tp)
corresponds to the exponents of the whole chain, while the expo- B(E)=lim — In(n) (16)
nents calculated by dividing the chain in 2 are shown by dots. =
Observe the pronounced dip of the Lyapunov at the impurity modewhich remains finite for power law-localized states. Observe
which gives a value similar to the states inside the band of thehat 3(E) has the form of a fractal dimension. In general, we
periodic chain(energies from 1 to 2 in the figure can expect small oscillations g8(E) as the system size

) ) ) increases, since critical states can display a multifractal
sponding to the full chain has a pronounced dip that appatyrel’-2°

proaches zero at the energy that corresponds to the impurity

mode. B. Stability of the trace map

The problem with this method is that we need to know in Once the relation between localization and band width is
advance where the maximum of the wave function is, and

. established, the scaling properties of the bands are easil
then proceed to study the Lyapunov exponent. Clearly, Ir}ound from the trace rr?ag SF;ndA/ is determined by the y
1 n

many cases this information is difficult to obtain, so the _ )
method is hard to apply. However, as we shall see in the nexinergies that are the roots ef(E) —4=0, which also sat-
section, the problem can be avoided by using the scaling dFfi€S
the spectrum bandwidth. drﬁ
aE #0, (17)
I1l. LOCALIZATION AND STABILITY

OF THE TRACE MAP in order to assure that the trace crosses the line defined by 2
or —2 (observe that sometimes in this article we will con-
sider the square of the trace, instead of the trace, in order to

A second approach toward the use of the trace map as avoid making differences between the points 2 and). If
diagnostic tool, is to adapt a qualitative argument similar towe arrange the band edges in decreasing ofdienoted by
the one introduced by Thouléssand Siré® in the localiza-  EP"), the width of each band ;= (E} —E}._,).
tion problem to explain the scaling of bands. Consider a For those energies that are in the spectrunHgf, the
piece of chain withn sites. For the moment we do not care inverse localization length of these states can be estimated
about its internal structure, which may be periodic, disor-using Eq.(15),
dered, or quasiperiodic. Now we construct a crystal by a
periodic repetition of the chosen piece, which acts as an uni-
tary cell of this crystal.
Let us first consider that the cell is also a crystal. As

usual, the width of the bandW,) of this crystal isW,

02

©

A. Scaling of bands

1 (ERL—ED_
y(E)=lim — —|n(M)
o t,

n—oo

~t,,. This width also can be seen as the overlap between two = lim — ﬁ'”[Tnéi(iz) ~Tz-1(£2)].

similar statesgy,) and|,) at two contiguous unit cells. This o

overlap is given by In the last step it was assumed thz} = T;éi(iZ), where

T;’%i is the branch P of the inverse ofr,,, and thatt,, does

W~ (da|H|d2)~tn, 13 ot grow faster than. Due to Eq.(17), at the pointEY; , we

where it was assumed that the fact that extended states do rmoust require that the derivative ef, 5 must be finite.

decrease withm, and thus their overlap isindependent. This Using all these facts, we can classify the localization

shows that the size of the band is cleanlyndependent. properties in terms of the trace map. We start by considering

Next, we consider that the unit cell is disordered, withthe case of a band of extended states. In the previous sub-
eigenstates that are exponentially localized with a lengtlsection, we showed that the band width does not depend on
&(n>¢). The overlap leading tW, is then of the order, the system size. Thens,(E})==2,r(E}_,)=*2 are
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fixed points of the trace map, since the trace remains fixed aer set. However, even in these cases the band width allows
the map is iterated. These fixed points have the followingus to obtain useful information of localization. As an ex-
property, if we start to iterate the map with an energy that isample, we can cite the reduction of nearly all bands in a
close toE); but inside the bandH}, — &), thenr,(E%—¢) is  Fibonacci chain with an impurity, due to the apparition of
bounded since the band width is constant, but to the othenany localized states inside the original spectfani?
side of E}, , the corresponding orbit of the map is unbounded When the band width is reduced with the scaling by the
becausey(E. +¢) is positive defined outside the band. OPening of new gaps, this means that there is a cascade of
These kinds of fixed points are called saddle points. pointsE{' as the system grows, i.e., the number of preimages
Around a localized eigenstat&(), the band shrinks in an  0f 7,=*2 grows withn. Observe that in order to have this
exponential way, which means that #,(E})=*+2, after beh_awor, the trace map must be nonlinear. In such maps, the
some steps of growth of the chal; must lie outside of the orbit of the trace for the band edges can be periodic or

band. Thus, the only point that satisfies(E)|<2 whenn  Pounded aperiodit. . o
goes to infinity isE, because, for smalk, and n large An estimate of the scaling of wave functions is given by

enough,| 7,(E+¢)|>2. Any deviation of the initial condi- USiNd EQ.(16) and a Taylor expansion around a pol
tions, 71(Eq), 7o(E.) of thetrace map, will eventually inside the band, with the property that the first derivative of
i) c/ (o7 2 LI | il

diverge exponentially as we iterate the trace map. Thus, alf'€ Sauare of the trace is zero onlietween the two band

exponential state corresponds to an unstable fixed point (ﬁdges,.there is alwa'ygia point that sa.tisfies this condjtion
According to our definition(16), the scaling exponent is

the trace.
The width of the band can be estimated by making a b 2 o
Taylor expansion of the trace, or even better, the square of it, - In[[d*7/dE*Je—g |
to simplify the number of cases under consideration. This :3(E):r!'”l_ In(n) (22)

expansion is

1(W.\2[ 9272 Before finishing this section, we would like to mention
4=74ES)=72E)+ = —") 2" , (18  that the stability of the trace can also be useful to explain
2\ 2 dE”|__. some properties of gap states, where the states satisfy
¢ | 7o(E)||>2. The connection with the stability is found by
where it was used that the first derivative is zer&eatE,, taking the derivative of Eq11) with respect to the energy
and thatwW,=2(E.—E).
The inverse localization length is then obtained using Eq. ,dy(B)  1[sgr(ry)]dr,
(15, whenn—oo, yo(E)= — - (23
dE n|\~2-4|dE

d27'2

2”1 (19 From this last equation it is clear that whenever the deriva-
dE E-E tive of the trace map with respect to the energy is zero, we
) ) obtain a critical point for the Lyapunov exponent. We will
T2h'5 general formula can be reduced in the cases whegenote these critical points B . The nature of these points
mh(Ec) =0 (this is the case of a linear chain with an impurity, js optained by the sign of the second derivatiyéE*) is

as we shall see in the next sectido get maximum (minimun) when Sgnfn)[dzTn/dzE]E:Ei* is

negative (positive. In both cases, the Lyapunov exponent
(200  has a parabolic shape around these critical points,

1
Yn(E)=lim ﬁln

n—oo

C

Tn

dE

o1
Yn(E)= Ilmﬁln

n—oo

E=E

C
__ * i _E*\2

The sensitivity to the initial conditions of the trace map Y(E)=y(E)+y (B(E-ED)" (24)

can be also characterized by its Lyapunov exponents, now i

the sense used iohaos theoryfor the study of dynamical

systems. This exponents are definet! as

But if (d7,/dE)=0, then, for a small perturbation around

the critical pointE" , 7,(E" +&)=7,(E") and thus the trace
map [see Eq.(5)] must be nearly insensitive to the initial
r(E+&)—7,(E) conditions atE”" . In the next section, we will show an ex-

, (21 ample where the Lyapunov exponents of the gaps states are
parabolic due to the existence of fixed points in the map.

BE)= i 1I
o(E)=lim ~In

n—ow,e—0

which measures how different the orbits of two different but
very close initial conditions are, as they are iterated by the IV. APPLICATIONS
map. If we compare last equation with E2[), it is clear that
they are equal. Then, the inverse localization length is given
by the Lyapunov exponent of the trace map, used in the same In this subsection, we solve the same problem considered
sense of chaos theory. in Sec. Il, i.e., the on-site problem in a periodic chain with an
Quasiperiodic chains are much more difficult to study,impurity (Vo=46>0, and,V,=0n+#0;t,=1.0); but using
because the change of the band width is usually achieved kiyie trace for calculating the localization length. For the
the apparition of new gaps as the system size grows. Thigresent case, the trace of the total transfer matrix for a chain
mechanism is similar to that used in the generation of a Cansf n+ 1 sites(with n even is given by

A. Periodic chain with an impurity
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The1= tr( M r‘|/2D M n/2) 50
E -1\"2/E-§ —-1\(E -1\
“Wly o 1 ofl1 o |

(29

30

where M is the transfer matrix which corresponds to sites g,
20 f

whereV,,=0, andD is the matrix at the impurity site. This

expression can be evaluated by using the cyclic properties @
the trace, and a matrid that makes a unitary transformation N
which diagonalize, 5
1.0 [ v ! “‘ A :
1= U[(UMU~"UDU Y] Wil " Al " ! ,: it
W "n“ th Gt A L
1 N (E) 0 n 045 00 10 20 3.0
- +tr E/tl
E°—4 0 A_(E)
FIG. 2. Lyapunov exponents of a Fibonacci chaif €1, Vg
((E— SN, (E)—2 —d0IN_(E) =0, t=1) at the gap energies. The dots correspond to the expo-
_ . ) nents of the transfer matrix norm, while the solid line corresponds
AN (E) (E=or_(B)+2 to those exponents of the trace map.
(26)
. 1 d
where\ .. are the eigenvalues of — i il n+1
Yn+1(E) JLﬂlnHln IdE [N (E)]
E+\VE?—4 ]
Ae(B)= . (@7 s \]
X| 1—
E“—4) | E-E,

(30

Finally, the trace is given by
.- S =In)\+(EC).
e =[N (BT 1= JEZ-a This result is the same as the one obtained from(E2).
1) B. Fibonacci chain
+[>\(E)]“”(1+ ) (28) . : . o
JVE?—4 Another interesting example of a typical quasiperiodic lat-
tice is the on-site problem in a Fibonacci chain. For this
The spectrum is the set for whidh,_ ;| is lower than 2,  chain, Khomotoet al. found a nonlinear trace m&gvhich
asn goes to infinity. From Eq(28), this condition is satisfied allows us to compute the spectrum in a powerful way. For
when\ .. is a complex number, and thus the set is the interthe on-site problem, Kohmotet al. considered a chain in
val [ —2,2], which corresponds to the spectrum of a periodicwhich the self-energy, has two values/_ and Vg which
chain. Outside this sef[\ ,(E)]"*?| goes to infinity when are ordered by a Fibonacci sequertte results for the off-
diagonal problem are simil3r In such a case, the transfer
matrix at sites which are Fibonacci numbétise Fibonacci

E>0, since\, is real. However, if6>0, there is an energy
number of orderl is defined asF(l)=F(I—-1)+F(
—2),F(0)=1,F(1)=1] are given by a recurrence relation,

which leads to the following trace map:

for which

(29
(31)

=0,
TEH = TFI-1)TF(1-2)" TF(1-3)»

1_ [
( E2—4)
and the trace is zer@\_(E)]"*1~0 for E>0, since\ _ . o .
=1/\,). From Eq.(29), this energy corresponds exactly to With 71=(E—Vy)/t,7o=(E—V,)/t,7_;=2 as initial condi-
the impurity mode E.= J4+ 6?). Observe that for finite tions. Also, it is possible to give a geometrical interpretation
there is always a band around this point. Such a band is ¢ the trace map, since the evolution of the trace can be
natural consequence of tieentinuityof 7, ,(E). The exis-  Visualized as a trajectory of the pointe() , 7e(1 -1y, 7r( - 2))
tence of a band around the impurity mode for finités a N three-dimensional space. Thl_s traj_ecto_ry occusrs on a sur-
very important point, because it means that for finite latticesface, because the map has an invarigngiven by

the result is not the same as the one obtained from a direct

diagonalization of the Hamiltonian, in which only one mode

is found. They are only equal in the infinite limit. This fact = (11— 1)%=1.

In Fig. 2 we show the Lyapunov exponents of the gap

also explains why the Lyapunov exponent is zero, because
dfn
Finally, the inverse localization length of the impurity wave functions in a Fibonacci chain, obtained using &d)
with V| =1Vs=0;t=1 for a chain withl=4. The results

2 2 2
TF T TRa-1) T TR1-2) T TR TRO-1 TR1-2)— 4
(32

we have a continuous spectrum.

mode is found using Eq$20) and (28):
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40 ‘ ‘ ‘ ‘ pointsE; are in the middle of the bands, wherg(E)=0.
Observe that states at the edges of the spectrum are less
extended, while the states at the center are more extended.
a0l ] This is in agreement with the analytical results found by
Kohmotoet al®

V. CONCLUSIONS
B 20

stability properties of the trace map. In that sense, the local-
ization lengths are mainly determined by the Lyapunov ex-

‘ ‘ ‘ ] ponents of the trace map, which are very practical, especially
i when the trace can be obtained by recurrence relations.
| ‘ ‘ These exponents have a different meaning than those defined
0 | from the norm of the transfer matrix, which have certain
B ' problems in the practice.

Using the trace map, a dynamical system can be defined,
and eigenstates are classified according with the properties of
the map: a localized eigenstate corresponds to energies for

. - . . which 7,(E) is a repulsive fixed point of the trace map; for
calculated via Eq(11) are similar to those obtained in other an extended state, the band edgeE")=+2 are saddle

6,27 | i ; ; _
works?®?" using a direct evaluation of the norm of the prod fixed points, and for critical states, the orbit af(E) is

uct of matrices. The parabolic shape of the Lyapunov expo, eriodic or bounded aperiodic. These critical states are al-

nent at the middle of the spectral gaps are due to energiéas .
Wways produced by nonlinear trace maps.

where the .trace map is nearly insensiti_ve tp the initial con- In these nonlinear maps, the structure of the spectrum and
ditions. This fact can be clearly seen in Fig. 2, where theI A '
ocalization is due to the fractal structure of the attractor set

solid line shows the Lyapunov exponent of the trace map . . X
used in the sense of chaos theory. The minima for this quanqf the trace map. This fact suggests the use of Feigenbaum’s

tity occurs at the maximum of(E). Figure 2 also shows a [rehnormalll(zgtlon thilo'?}? to study quasiperiodic systems.
subtle point, the difference between the Lyapunov exponents IS WOTKIS currently In progress.
of the wave function, compared with those exponents of the
trace map. Note also that at the middle of the allowed ener-
gies wherey,(E) is constant, there is another fixed point of | would like to thank J.L. Arago for a critical reading of
the trace, which corresponds to states at the middle of théhe manuscript, and R. Barrio, Chumin Wang, and R. del Rio
allowed bands. for useful discussions. This work was supported by
Figure 3 shows an application of E@2) for a Fibonacci CONACyT through Grant No. 25237-E, and DGAPA

chain, with the same parameters as those used in Fig. 2. TRéNAM Project No. IN119698.

o
T

‘ ‘ ‘ ‘ ‘ In this article, localization in 1D was studied by using the
|
\
|
| |
0. 1

0.0
-2.0 -1.0

FIG. 3. Scaling exponents of a Fibonacci chain, with=1,
Vs=0, t=1, andl=4.
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