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Approximate analytical expressions for the scaling exponents of the electronic wave-
function of a Fibonacci chain are obtained from the trace map. This is done by relating
the stability of the trace map with the localization nature of the system. A comparison
is made with the only state for which an analytical expression of the scaling exponent is
known.
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1. Introduction

After the discovery of quasicrystals, the Fibonacci chain (FC) and the Harper model have
been widely used as benchmark tools to understand the effects of quasiperiodicity [1]. For
the FC, it has been proved that the spectrum is singular continuous (fractal), with critical
wave-functions [2]. In higher dimensions (D), the nature of the spectrum and the localization
properties are not well understood, due to the different topology [3]. Even in 1D it has not
been possible to find the scaling properties and the effects of the boundary conditions for all
the eigen-functions, although now there are many well developed mathematical techniques
to study quasiperiodic Hamiltonians [4]. Only for a certain state of the FC the exact scaling
exponent of the wave-function is known, and as we will see, some discrepancies in its
value appear in the literature [5–7]. Part of the problem resides in the failure of the usual
tools to investigate localization. To solve this, an alternative approach has been proposed
by the author [8]. In 1D, this approach turned out to be closely connected with the nature
of the transfer matrix trace map renormalization group flow, which usually was used to
determine the spectrum (set of allowed electron energies). In this article, we present new
analytical results for the scaling exponents and the nature of localization in a quasiperiodic
system, using the trace map renormalization group and the method published previously
[8].

2. Scaling Exponents and the Trace Map

As a model, we use a Hamiltonian defined on a chain of n sites, with a potential Vn at site
n, and hopping integral tn + 1 between sites n and n + 1. The corresponding Schröedinger
equation is, tnψn − 1 + tn + 1ψn + 1 = (E − Vn)ψn , where ψn is the value of the wavefunction
at site n, and E is the energy. This equation can be rewritten in terms of the transfer matrix
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Mn(E), and a vector �(n) with components (ψn ,ψn − 1), such that �(n + 1) = Mn(E)�(n).
The wave-function at site n is given by a successive application of the previous relation,

�(n + 1) = Mn(E)Mn−1(E) . . . M1(E)�(1) = Tn(E)�(1).

The spectrum is the set of energies for which the trace norm τn(E) ≡ trT(n,E) is less [2] than
2. For many systems, there are recurrence relations of the trace [5] as a function of the trace
of m smaller chains of lengths l j of the form τn(E) = f(τln − 1 (E),τln − 2 (E),. . . ,τl1 (E)). These
types of relations are called trace maps. In a previous work [8], we showed that the properties
of localization are determined by the stability of the map around the points τn(E) = ±2,
since for a rational approximant, the bandwidths are determined by the wave-function
overlap. Localized states correspond to repulsive fixed points of the map [8]. For extended
states, the bands edges (energies that we denote by Es) do not change with the system
size, and thus τn(Es) = ±2, is a fixed point of the trace map [8], i.e., the map must satisfy
±2 = f( ±2, ±2, ±2, . . . ), where the point is hyperbolic in nature [8]. In 1D quasiperiodic
systems, the bands of the approximants are subdivided as n grows, and thus the number of
points Es also grows with the system size. For quasiperiodic systems, the wave-function
decays as [2] ψn ≈ nβn (E). Hence, for a rational approximant with a unit cell size of
length n, the bandwidth scales as: Wn(E) ≈ < ψn|H|ψn + 1 > ≈ tnn2βn (E). Since Wn(E) is
determined by the trace, it can be proved that [8],

βn(E) = 1

2 ln(n)
ln

(
dτn(E)

dE

)
(1)

The scaling exponent obtained from this equation is a minimum, since the wavefunction
overlap between the unitary cells of a rational approximant is dominated by the maximal
overlap. This is the most important exponent, because it rules the maximum conductivity of
the system. If the gaps between the bands are very small compared with Wn , corrections may
appear due to hybridization of levels in neighboring cells. Now we will use this technique
for studying the FC, which is a Hamiltonian with two kinds of atoms, A and B arranged in
a Fibonacci sequence. The trace of a FC with length F(l) (F(l) is the Fibonacci number of
generation l) is given by [5],

xl(E) = xl−1(E)xl−2(E) − xl−3(E), (2)

where xl(E) = τn(E)/2. The map has as initial conditions [5], x−1(E) = 1, x0(E) = (E −
λ)/2 and , x1(E) = (E + λ)/2, where λ = | (VA − VB)|/2 in the diagonal case. For the off-
diagonal case λ = |δ − (1/δ)|/2, where δ = tA/tB .wheretA and tB are the hopping integrals
between atoms A and B. The nature of the states can be deduced from the approach pre-
sented. First we obtain the fixed points of the map (x∗). From Eq. (2), x∗ = 2(x∗)2 − x∗.
Two solutions are found, x∗ = 0 and x∗ = 1. The first solution is not consistent with the
initial conditions, since the map has an invariant manifold [5]. From the invariant, is easy
to show that the other fixed point, x∗ = 1, occurs only when we have a periodic chain,
λ = 0 and V (n) = VA = VB . For this value of λ, the system presents extended states, but is
instructive to apply the method presented to determine localization. In principle, from the
fact that there are fixed points of the map for λ = 0, this means that the states are localized
or extended. Now we investigate the nature of the stability around x∗(E) = 1 by making a
linearization of the equations. The map can be seen as a trajectory [5] in 3D of the point
(xn + 1, xn , xn − 1). Since the map is a vectorial function, the derivative is a 3 × 3 matrix, and
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when we move around the fixed point P by the small vector dP = (εx , εy , εZ ), we obtain,




xn+2(P + dP)

xn+1(P + dP)

xn(P + dP)


 =




xn+2(P)

xn+1(P)

xn(P)


 +




2xl(P) 2xl+1(P) −1

1 0 0

0 1 0







εx

εy

εz




The stability nature is obtained from the eigenvalues of the matrix evaluated at the point
p = (1, 1, 1); these eigenvalues are r1 = − 1, r2 = σ 2, r3 = 1/σ 2, where σ = (

√
5 + 1)/2.

Since r2 > 1 and r3 < 1, the point is hyperbolic. The hyperbolic nature of the flux means that
the states are extended. There are not repulsive fixed points, hence localized states are not
observed. The other possibility is to have critical states when λ = 0, as it is revealed from
the fact that the map contains two cycles [6]: one of period 2 and the other with period 6.
From this, one can show that the trace scales as τl + 6(E) = (τl(E))α(E). Using Eq. (1), the
stability of the map predicts that the scaling exponent of the wave-function is,

β(E) = α(E)/2 (3)

For example, at E = 0 the bandwidth is dominated by the 6 cycle [6]. An stability analysis
can be made, except that now the derivative is obtained by multiplying the matrices in each
point of the cycle. The resulting matrix eigenvalues are [6],

r1 = −1, r2,3 = [(1 + 4(1 + λ2)2)1/2 ± 2(1 + λ2)]2

and the scaling exponent of the trace is α(0) = ln σ 6/ ln r2 · E = 0 is the only state for which
an analytical expression is known [6]. Later on, a different result for the same state was
published [7], and two limiting exponents were obtained, one is a maximum and the other
a minimum [7]. In Fig. 1, a comparison between these works and ours, given by Eq. (3)
is shown. For δ � 1, all the results coincide (and also for δ � 1, due to the symmetrical
form of λ with respect to tA and tB). For δ →1, the obtained exponent deviates from the

FIGURE 1 Scaling exponents for E = 0. The dashed line was obtained using the method
of this work. Crosses (lower curve) are obtained form Kohmoto et al. [6]. The solid lines
(upper curves) are from Fujiwara et al. [7].
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previously published results [6, 7]. However, it has been proved that for this state, β depends
on the boundary conditions [9, 10]. To improve the results for δ →1, the hybridization of
levels needs to be taken into account, as we will show in future works.

In conclusion, we showed how the FC trace map can be used to determine the scaling
exponents of the critical wave-functions and the nature of localization.
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