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Abstract
The topological properties of electronic edge states in time-periodically driven spatially-periodic
corrugated zigzag graphene nanoribbons are studied. An effective one-dimensionalHamiltonian is
used to describe the electronic properties of graphene and the time-dependence is studiedwithin the
Floquet formalism. Then the quasienergy spectrumof the evolution operator is obtained using
analytical and numeric calculations, both in excellent agreement. Depending on the external
parameters of the time-driving, two different kinds (types I and II) of touching band points are found,
which have aDirac-like nature at both zero and p quasienergy. These touching band points are able
to host topologically protected edge states for afinite size system. The topological nature of such edge
states was confirmed by an explicit evaluation of the Berry phase in the neighborhood of type I
touching band points and by obtaining thewinding number of the effectiveHamiltonian for type II
touching band points. Additionally, the topological phase diagram in terms of the driving parameters
of the systemwas built.

1. Introduction

Graphene, a truly two-dimensional (1D)material, has proven to have very interesting and fascinating
properties [1, 2]. Among them, one canmention its extraordinarymechanical features, which can be used to
tailor the electronic properties, leading tomany novel effects in the static case [3–31]. As amatter of fact,
within the tight binding approach and in the absence of interactions between electrons, the effects of a
deformation field applied to graphene can be described via a pseudomagnetic field [22, 32–37]. On the other
hand, graphene possesses interesting topological properties for both the time-independent [38–52] and the
time-dependent cases [53–61]. For instance, in the static case, it has been proven that Dirac cones have a non-
vanishing Berry phase, whichmeans that they are robust against perturbations and disorder [62]. In addition,
sinceDirac cones always come in pairs, each cone has an opposite Berry phase as is companion. Hence, as a
consequence of the bulk-edge correspondence, an edge state (such edge state is a flat band for the case of
pristine zigzag graphene nanoribbons (ZGNs)) emerges joining two inequivalent Dirac cones (this is, two
Dirac cones with opposite Berry phase).

On the other hand, by applying a time-dependent deformation field to graphene, new andnovel phenomena
appearwhen compared to the static case [61]. For instance, when a time-dependent in-plane AC electric field is
applied to graphene, it is possible to undergo a topological phase transition from a topological semi-metallic
phase to a trivial insulator one [63]. Similarly, gaps on the energy spectrumof graphene can be opened by
irradiating graphenewith a laser by changing its intensity [64, 65]. This gapped phase is also able to host robust
topological chiral Floquet edge states, which are highly tunable [56]. These features are similar to the ones
observed in topological insulators, which also exhibit robust edge states. However, there is another kind of
topological phases akin to gapless systems [66, 67]. Take the kickedHarpermodel [68] and the kicked SSH
model [69], for instance. In the kickedHarpermodel via periodic driving, one can createmany touching band
points (i.e. points at where the band edges touch each other following a linear dispersion) that can give rise to
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highly localized edge states. This occurs because touching band points always come in pairs and each of them
have opposite chirality as its companion [68]. These edge states can beflat bands or dispersive edge states.
Interestingly enough, one can have the same effect on graphene nanoribbons by applying a time-dependent
strainfield [61]. The aimof this paper is to show some of these topological properties of gapless systems by
studying a periodically driven uniaxial rippled ZGN. To do that, we use a tight-bindingHamiltonian to describe
the electronic properties of the periodically driven rippled ZGNwithin the Floquet formalism. The quasienergy
spectrum is then obtained by using an effectiveHamiltonian approach.

It is important to remark that the considered deformation field is a corrugation of the graphene ribbon.Here
wewill restrict ourselves to the case of uniaxial ripples, i.e., the height of carbon atomswith respect to a plane is
affected only along one direction (inwhat follows, wewill consider a deformation field applied along the
armchair direction). Therefore, it is necessary to take into account the relative change of the orientation between
π orbitals [9].Within such approximation, as will be seen later on, the time-dependent deformation field allows
us to create touching band points (touching band points are points at where a band inversion is observed) at zero
or p quasienergies. Around such points the quasienergy spectrum exhibits a linear dispersion as in the case of
Dirac cones. The touching band points originated from the time-dependent deformation field can be of two
different kinds: types I and II, each of them giving rise to topologically protected edge states. For the former type,
we have found topologically protected flat bands at zero and p quasienergy. Suchflat bands join two
inequivalent touching band points with opposite Berry phase. For the latter, dispersive edge states were found
and it was found that they are, at least, topologically weak by obtaining thewinding of the effectiveHamiltonian.

Tofinish, it is worthwhile to say that the experimental realization of the deformation pattern here considered
can be difficult since it requires very specific hopping parameters values and very fast time scales. In fact, a similar
experiment was proposed by us in a previouswork [61]. However, this experiment was tailored for in-plane
strain [61], and since graphene is almost incompressible, the compressive strainwill induce ripples on the
nanoribbon. As a result, it is clear that ripple effects are important to be studied. Also, it is possible to have a 1D
periodic ripple on graphene. This is done by using thermal enginerring and by growing graphene upon a
substrate to induce an anisotropic strain pattern [70]. The time-dependent deformation field can be obtained by
applying a time-periodic pressure variation to thewhole system [61, 71] (the graphene nanoribbon and the
substrate). To observe the results presented below, the pressure needs to be in the frequency range of femto
seconds, which can be very challenging in a real experiment. As an alternative, we propose the use of artificial or
optical lattices, where the hopping parameters of the graphene nanoribbon lattice can be tailored at will [72–77].

The paper is organized as follows, in section 2we introduce themodel. This is, we briefly discuss how to
describe the electronic properties of a rippled ZGN. Then, the time dependence is introduced to themodel and
the time-evolution operator of the system is defined. In section 3, we analytically obtain the quasienergy
spectrumof the system via an effectiveHamiltonian approach. Also, the location of both types of touching band
points is found and the topological phase diagramof the system is built. The edge states of the system and their
topological properties are analyzed in section 4. Some conclusion are given in section 5. Finally, in the
appendices some calculations regarding themain text are presented.

2. Periodically driven rippled graphene

We start by considering a ZGNas the one portrayed infigure 1(a), thenwe apply an out-of-plane uniaxial
deformation field (a ripple field) along the y-direction given by,

z z y ycos 2 , 1j j jl ps f= = +( ) ( ) ( )

here, yj are the positions of the carbon atoms along the y-direction,λ is the amplitude,σ controls the spatial
wavelength, andf is a phase. Since such a deformation fieldmodifies the height of the carbon atoms, their
positions are alsomodified and can bewritten as z yr r, j¢ = ( ( )), where r are the carbon atompositions in
unrippled graphene.Within the low energy limit, the electronic properties of a ZGNunder a deformation field
along the armchair direction, as the one given by equation (1), are well described by the following 1D tight-
binding effectiveHamiltonian [9],

H k a b c k a b h.c., 2x
j

N

j j j x j j j
1

1

2 2 1 2 2 1 2 1 2å g g= + +
=

-

+ - -( ) [ ( ) ] ( )† †

where c k k2 cos 3 2x x=( ) ( ), the operator aj (bj) annihilates an electron at the jth site in the sub lattice A (B),
andN is the number of atoms per unit cell (seefigure 1, at where the unit cell is indicated by solid red lines). jg are
the hopping parameters given by [9],
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lN N1 1 exp , 3j j j j j0 1 1,g g a bd= + - -+ +[ ( ˆ · ˆ )] ( ) ( )

where 2.7 eV0g = is the hopping parameter for pristine graphene, Nj
ˆ is the unit vector normal to the pristine

graphene sheet at site j, which has the following form,

e z

z
N

1
, 4j

z j

j
2

=
- 

+ 
ˆ ˆ

( )
( )

with ,x y = ¶ ¶( ) being the two-dimensional (2D) gradient operator. ezˆ is a unit vector that is perpendicular to
the unrippled graphene sheet, 0.4a » is a constant that takes into account the change of the relative orientation
betweenπ-orbitals originated from the deformationfield, and 3.37b » is the decay rate (Grüneisen parameter).
Finally, the quantity lj j1,d + is given by,

l z y z y1 1 . 5j j j j1, 1
2d = - + + -+ +[ ( ) ( )] ( )

It is important to say that all distances, here on, will bemeasured in units of the interatomic distance between
carbon atoms (ac) in pristine graphene. In a similar way, wewill set 0g as the unit of energy. Having said that, it is
noteworthy that the energy spectrumof theHamiltonian equation (2) have been discussed in a previous work
for the small amplitude limit and for different ripple’s wavelength, see [9]. Also, it is important to say that the
deformation field here considered induces a pseudomagnetic field, since such deformation fieldmodifies the
relative orientation betweenπ orbitals. In fact, if we assume that N̂ is a smooth function of the position, the
magnetic flux through a ripple of lateral dimension l and height z is given by [35],

a z

l

10
. 6

1
c
2 2

3
F »

-Å ( )

If we introduce all the numerical values, we obtain 10 3
0F » F- , where c20 pF = and c is the speed of light.

Once that theHamiltonian that describes an uniaxial rippled ZGNhas been presented, we proceed to
introduce the time-dependence to ourmodel.Wewill consider a pulse time-driving layout,

H k t
H k t t T t

H k t t T T
,

if mod ,

if mod , ,
7x

x

x

0 1

1 1
=

< <
< <

⎧⎨⎩( ) ( ) ( )
( ) ( )

( )

whereT is the driving period and t1 is a number such that t T0 1< < . The previousHamiltonian describes a
driving layout inwhich for timeswithin the interval t T,1( ), the deformation field is turned on, whereas it is
turned off for timeswithin the interval t0, 1( ). For the sake of simplicity, inwhat followswewill consider the case
of short pulses, in other words, wewill consider the limit t T1  , which resembles the delta driving case. Thus,
in the delta driving layout, we turn on the deformation field given by equation (1) at times t=mT , while for
t mT¹ the deformation field is turned off, herem is an integer number. A graphic representation of this driving
layout is shown infigure 1.Within this limit (t T1  ), the time-dependentHamiltonian (7) takes the following

Figure 1. Schematic representation of the driving layout. The deformation field is turned off for t mT¹ , where t is the time,m an
integer number, andT is the driving period. This situation is shown in panel (a), therein a pristine zigzag graphene nanoribbon (ZGN)
can be seen, which isfinite along the y-direction but is infinite along the x-direction. The unit cell of which is indicated by solid red
lines. Atoms belonging to the sub lattice A (B) are indicated by red (green) circles. On the other hand, for t=mT the deformation field
is turned on, see panel (b). Note that the distance between carbon atoms remains the same as in pristine graphene but the height of
each atom ismodified along the y-direction, such height is given by a spatially periodic function, z(y). Finally, both the pristine and
deformed ZGNs can bemapped onto a quasi one-dimensional (1D) chain. Themapping of the rippled ZGN is presented in panel (c),
therein, the same color code as in (a) is used. The hopping parameters between carbon atoms are denoted by jg , where j is the label that
enumerates the carbon atoms along the y-directionwithin the unit cell. c kx( ) is a function of the quasi-momentum along the x-
direction, defined in themain text.

3

J. Phys. Commun. 1 (2017) 055023 PRoman-Taboada andGGNaumis



form,

H k t H k H k H k t T m, , 8x x
m

x x0 1 0å d= + - -( ) ( ) [ ( ) ( )] ( ) ( )

with theHamiltonians H kx0( ) and H kx1( ) given by,

H k a b c k a b h.c., 9x
j

N

j j x j j0
1

1

0 2 1 2 2 1 2å g= + +
=

-

+ -( ) [ ( ) ] ( )† †

and

H k a b c k a b h.c. 10x
j

N

j j j x j j j1
1

1

2 2 1 2 2 1 2 1 2å g g= + +
=

-

+ - -( ) [ ( ) ] ( )† †

Before entering into the details of ourmodel, let us briefly discuss the effect of considering a sinusoidal time
perturbation instead of aDirac delta protocol. TheDirac delta driving is useful because calculations are greatly
simplified and because analytical results can be obtained.One can consider amore realistic time perturbation
but the systemmust be treated numerically. Consider for example a cosine-like driving, then the quasienergies
of the system are given by the eigenvalues of the so-called FloquetHamiltonian [78], which is a block diagonal
matrix (for our case, each block isN×Nmatrix withN being the number of atoms per unit cell). By truncating
suchHamiltonian (this is, by considering only thefirst three blocks of suchHamiltonian), one can obtain
numerically the quasienergies. By using this kind of driving aswe have proven in a previouswork [61] for a
model quite similar to the one studied here, that the secular gaps are reduced in size when comparedwith the
delta driving. Additionally, the flat bands become dispersive edge states [61]. Summarizing, the emergence of
highly localized edge states is notmodified if amore realistic driving layout is considered.

To study the time evolution of our system, we define the unitary one-period time evolution operator,
U k T,x( ), in the usual form,

U k T t t T, , 11x k kx xy yñ = + ñ( )∣ ( ) ∣ ( ) ( )

where tkx
y ñ∣ ( ) is the systemwave function for a given kx. Themain advantage of using a delta kicking is that the

time evolution operator is easy tofind. For this case, we have,

U H k t t

H k H k H k

exp i , d

exp i exp i , 12

T

x

x x x

0

1 0 0

 òt

t t

= -

= - - -

⎡
⎣⎢

⎤
⎦⎥( ) ( )

[ ( ( ) ( ))] [ ( )] ( )

here  denotes the time ordering operator and T t = . In general HamiltoniansH1 andH0 do not commute,
therefore, it is a common practice to study the eigenvalue spectrumof thematrix representation of equation (12)
via an effectiveHamiltonian defined as

U k H k, exp i . 13x xefft t= -( ) [ ( )] ( )

Then, the eigenvalues of the time-evolution operator, whichwe denote by tw, are the eigenvalues of the effective
Hamiltonian, H kxefft ( ). Since tw are just defined up to integermultiples of 2p, they are called the quasienergies
of the system.

Once that the time-dependence have been introduced to ourmodel, we have four free parameters, three
owing to the deformation field (λ,σ, andf) and one due to the driving layout (τ). One can study the quasienergy
spectrum for awide range of parameters, however just a few set of parameters allows us to do analytical
calculations. Among them, one canmention the case 1 3s = and 0f = for which the systembecomes
periodic along both the x-direction and the y-direction. This is due to the fact that the hopping parameters, for
this particular case, just take two different values, namely,

1
1

exp 1 1 , 14j j

3

2
2 2

g a
a

b x l= + -
+

- +
p l

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟ [ ( )] ( )

where 1 4jx = for odd j and 3 2jx = otherwise.

It is noteworthy that for 1 3s = , our system is quite similar to the system studied in [61], therein a
periodically driven uniaxial strained ZGN is studied. Themain result of such paper is the emergence of
topologically protected flat bands at both zero and p quasienergies. The emergence of theseflat bands can be
understood in terms of a kind ofWeyl points that appear each time that the bands are inverted [79]. Therefore,
we expect ourmodel to have topological flat bands andWeyl points. This conjecture is confirmed in the next
sectionwhere the touching band points of the quasienergy spectrum are found.
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3. Touching bandpoints

Our system can be studied numerically for any combination of driving parameters. From an analytical point of
view, only few cases are simple enough to carry on calculations. In fact, for inconnmensurateσ, the problem is
very complex since quasiperiodicity arises and requires the use of rational approximants and renormalization
approaches [80–83]. Herewe have chosen to present simple analytical cases and compare it with the numerical
results. In particular, wewill study the quasienergy touching band points for 1 3s = , 0f = andfixed values of
λ and τ. For this case, the systembecomes periodic along both the x- and y-directions if cyclic boundary
conditions are used in the y axis. Nanoribbons are thus studied by changing the boundary conditions. This
allows to define the Fourier transformed version ofHamiltonians equations (9) and (10),

H h

H h

k k h k

k k h k 15

0

1

0 0

1 1

s

s

=

=

( ) ( ) ˆ ( ) ·
( ) ( ) ˆ ( ) · ( )

by using a vector in reciprocal space k kk ,x y= ( ). is (i x y z, ,= ) are the 2×2 Paulimatrices and

hh k h k k0 0 0=ˆ ( ) ( ) ∣ ( )∣, hh k h k k1 1 1=ˆ ( ) ( ) ∣ ( )∣. Here, h k0( ) and h k1( ) denote the normof h k0( ) and h k1( )
respectively. h k0( ) and h k1( ) have components which are defined in appendix A. The k-dependent time
evolution operator, equation (12), now takes the following form,

U k kk k, , , 16
k

y y

y

åt t= Ä ñá( ) ( ) ∣ ∣ ( )

where,

H Hk k k, exp i exp i 170 t td t= - -( ) [ ( )] [ ( )] ( )

and H H Hk k k1 0d = -( ) ( ) ( ). To obtain the quasienergy spectrumweuse an effectiveHamiltonian approach.
Let us define the effectiveHamiltonian as,

Hk k, exp i . 18eff t t= -( ) [ ( )] ( )

Since theHamiltonians H k0( ) and H k1( ) are 2×2matrices, it is possible to analytically obtain H keff ( ) using
the addition rule of SU(2) (see appendix A for details). After some calculations and using equations (15) and (17),
one gets,

H k k h k , 19eff eff sw=( ) ( ) ˆ ( ) · ( )

and as before, s is the Pauli vector. The quasienergies, ktw ( ), are given by the following expression,
h h

h h

k k k

h k h k k k

cos cos cos

sin sin , 200

0

0d

tw t d t

t d t

=

-

[ ( )] [ ( )] [ ( )]
ˆ ( ) · ˆ ( ) [ ( )] [ ( )] ( )

where h k h k h k1 0d = -( ) ( ) ( ), and h keff
ˆ ( ) is given by,

h h

h h

h h

h k
k

h k k k

k
h k k k

k
h k h k k k

1

sin
sin cos

1

sin
sin cos

1

sin
sin sin . 21

eff 0

0 0

0 0

d

d

tw
t d t

tw
t td

tw
td t

=
-

+
-

+
-

´

ˆ ( )
[ ( )]

[ ( )ˆ [ ( )] [ ( )]]

[ ( )]
[ ˆ ( ) [ ( )] [ ( )]]

[ ( )]
[ ( )ˆ ˆ ( ) [ ( )] ( [ )]] ( )

Sincewe are looking for touching band points, it is useful to plot the quasienergy spectrum for some
characteristic values ofλ and τ. Infigure 2we plot the quasienergy band structure for 1 3s = , 0f = , 0.5l = ,
and t p= . Note that apart theDirac cones (indicated by yellow dots in the figure), there are other touching
band points at zero and p quasienergies.

From figure 2, we can see that touching band points always emerge at zero or p quasienergy, then it follows
that they can be obtained by imposing nk*tw p=( ) , where n is an integer number and k kk ,x y* * *= ( ) are the
special points where this happens. By substituting k k*= in equation (20), the touching band points are given
by the solutions of the following equation,

h h

h h

k k

h k h k k k

1 cos cos

sin sin . 220

0

0

* *

* * * *d

t d t

t d t

 =

-

[ ( )] [ ( )]
ˆ ( ) · ˆ ( ) [ ( )] [ ( )] ( )

A careful analysis of equation (22) shows two possible solutions depending on the value of the dot product
h k h k0 * *dˆ ( ) · ˆ ( ). In other words, there are two kinds of touching band points that we have labeled by types I and
II. For the type I, it is required that h k h k 10 * *d = ˆ ( ) · ˆ ( ) , which is equivalent to ask the commutator
H Hk k,1 0* *[ ( ) ( )] to vanish. For type II, it is necessary to impose two simultaneous restrictions, the first one is
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h k h k 10 * *d ¹ ˆ ( ) · ˆ ( ) , whereas the second one is given by h hk kcos cos 10* *td t = [ ( )] [ ( )] , thismeans that
type II touching band points never occur at k 0, 2 3y* p=  . It what follows, wewill study the necessary
conditions for having these kinds of touching band points. After that, the topological phase diagramof the
system is obtained.

3.1. Type I
Although this kind of touching band points have been studied in a previous work for a very particular case of
hopping parameters [61], here we obtain the touching band points for the general case of an effective linear chain
with two different hopping parameters, say 1g and 2g .We start our analysis by noticing from equation (A.9), that

h k h k 10 * *d = ˆ ( ) · ˆ ( ) is fulfilled for k 0, 2 3y* p=  , needless to say that such values of ky give the edges of the
quasienergy band structure along the y-direction, we stress out the fact that at the edges of the quasienergy band
structure, Hamiltonians H k0( ) and H k1( ) commute. By substituting ky* into equation (20), one gets,

k k2 cos 3 2 , 23x x2 1tw tg tg= ( ) ( ) ( )

where the plus sign (+) stems for k 0y* = , while theminus sign (−) stems for k 2 3y* p=  . Now, in order to

have touching band points, two band edgesmust touch each other. This occurs whenever k nx*tw p= ( ) (n
being an integer number). By using equation (23), we find that kx* has two possible solutions given by,

k
n

k
n

2

3
arccos

2
,

2

3
arccos

2
. 24

x

x

2

1

2

1

*

*

p tg
tg

p tg
tg

= 
-

= 
- +

+

-

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥ ( )

( )

( )

As before, kx*
+( ) stems for k 0y* = , while kx*

-( ) stems for k 2 3y* p=  . From the structure of equation (24), it is
easy to see that touching band points always come in pairs, as in the case ofWeyl andDirac points.We have to
mention that for n=0 and for odd n there are two pairs of touching band points, however this is not the case for
even n (n different from zero) for which just one pair of touching band points emerge. This can be understood by
looking at equation (24). It is readily seen that for even n both kx

+ and kx
- are the same.On the other hand, the

case n=0 (i.e. the time-independent touching band points)worths special attention, since in this case the
touching band points correspond toDirac cones shifted from their original position due to the deformation field
[84]. As is well known, theDirac cones give rise toflat bands in the time-independent case when the nanoribbon
is considered to befinite, this is still true even in the presence of a time-dependent deformation field [61]. Aswill
be seen later on, touching band points for n 0¹ also give rise to topologically protectedflat bands.

It is useful to obtain the conditions to have touching band points, since this sheds light about the topological
phase diagramof the system. Such information can be readily obtained by observing that in order to have real
solutions for equation (24), the following conditionmust be satisfied,

n 2 . 252 1p tg tg-∣ ∣ ( )

In otherwords, there is a critical treshold for τ, say ct for having touching band points. Such value depends upon
the ripple’s amplitude via 1g and 2g (see equation (14)). The explicit formof ct can be obtained from the extremal
limits of equation (25), one can prove that is given by,

2
. 26c

1 2

t
p

g g
=

+
( )

It is important to say that each time that τ reaches an integermultiple of ct , new touching band points will
emerge, in other words, therewill be new pairs of touching band points for n ct t= , where n is an integer

Figure 2.Quasienergy band structure as function of k for 1 3s = , 0f = , 0.5l = , and t p= obtained from the analytical
expression equation (20). Note that besides theDirac cones (which are shifted from their original positions due to the ripple field),
indicated by yellow dots, others touching band points with linear dispersion around zero and p quasienergy emerge.
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number. Also observe that bandswill touch each other at p quasienergy if n is odd, whereas theywill touch
each other at zero quasienergy for even or vanishing n. From equation (25), we can construct the phase diagram
of type I touching band points, however, this phase diagramwill be incomplete since it will not contain the
information of the type II touching band points. Therefore, we leave the construction of the phase diagram to be
done after analyzing type II touching band points.

Tofinish, let us confirmour results. Infigure 2we used 0.5l = and t p= , this is, we have 2 3c ct t t< <+ +.
Therefore, theremust be six pairs of touching band points, three pairs at zero quasienergy (two for n = 0 and
one for n = 2) and twopairs at p quasienergy (n = 1). This is in completely agreement withfigure 2.

3.2. Type II
Let us start by determining the location of this kind of touching band points. To do that, we set h n1td p= and
h n0 2t p= in equation (20), where n1 and n2 are integer numbers. After some algebraicmanipulations, one
obtains,

k

k
n k

k
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1 1 2 1

4 1
,
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4 cos 3 2 1
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Once again, we can obtain the conditions for having these kind of touching band points by noticing that to
ensure having real solutions in equation (27), the following conditions need to be held altogether,

n k

k

0
1 1 2 1

4 1
1

4 cos 3 2 1

4 cos 3 2
1. 28

n n
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It is worthwhile tomention that the band edges will touch each other at p quasienergy if n1 is even and n2 is
odd or vice versa, whereas theywill touch each other at zero quasienergy for either n1 and n2 even or odd.

The conditions given by equation (28) add new phases to the phase diagramof the system. Such diagramwill
be built in the next section.

3.3. Topological phase diagram
Infigure 3, the phase diagram for types I and II touching bandpoints is presented, suchdiagramwas built from the
expressions for the critical values of τobtained fromequation (26) and (28). Therein, infigure 3, type I touching
bandpoints are labeled byn and each single value ofn gives rise to twopairs of this kindof touching bandpoints. For
instance, the region label byn= 0, 1 has four pairs of touching bandpoints, twopairs corresponding ton=0 at zero
quasienergy (Dirac cones, aswas discussed above) and theothers twopairs at p quasienergy corresponding to
n=1.Note also that each value ofn corresponds to awell defined region in the phase diagram.When it concerns to
type II touching bandpoints things becomemore complicated since eachpair of integers (n1,n2) results in very
intricate regions on the phase diagram, as is clearly seen infigure 3 in the regions labeled by II. Additionally, for
having type II touching bandpoints high values of the ripple’s amplitude are required,whichmakes themdifficult to
beobserved experimentally since non-linear effectsmay appear before reaching this regimen. Finally, note that the
fact that bothkinds of touching bandpoints always come inpairs suggests that they can give rise to topologically
protected edgemodes if the system is considered to befinite. In fact, this is the case as is provenbelow.

4. Edge states

In this sectionwe discuss the emergence and the topological properties of edge states in afinite ZGN. In the
previous sectionwe found touching band points at which the edges of the quasienergy spectrum cross each
other, which is a signature for edge states. In order to confirm if edge states emerge, we calculate the quasienergy
spectrum for afinite system. To do that, a numerical diagonalization of thematrix representation of the time
evolution operator equation (12), as a function of kx, is done forfixedσ,f,λ and τ.We also study the localization
properties of thewave functions of such states. Using the logarithmof the inverse participation ratio (IPR),
which is defined as,
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where jy ( ) is thewave function at site j for a given energy (or quasienergy)E. The IPR is ameasure of thewave
function localization [4]. The closer the IPR to zero themore localized thewave function is.Whereas for the IPR
tending to−1, we have completely delocalizedwave functions. Having said that, we proceedwith the study of
the edge states.

4.1. Type I
Let us consider first the case of type I touching band points.We start by obtaining the quasienergy band structure
as a function of kx via the numerical diagonalization of thematrix representation of equation (12). Infigure 4we
show the resulting quasienergy band structure for 1 3s = , 0f = , 0.5l = , t p= ,N=164 atoms and
obtained by usingfixed boundary conditions.We used the same condition as in the analytically obtained plot in
figure 2(b). Note the excellent agreement between the numerical and the analytical results.

Infigure 4(a)we also show thewinding number of the effectiveHamiltonian, which is basically thewinding
number of the unit vector defined in equation (21) for k 0.9 3x p= , for a phasewithflat bands joining two
inequivalentDirac cones. As can be seen, thewinding number is one, as expected from the topological properties
of afinite ZGN.

Themain difference between figures 4 and 2 (apart from the fact that figure 2 is a three-dimensional plot and
figure 4 is the projected band structure as a function of kx) is that, for afinite nanoribbon, highly localized edge
modes are clearly seen infigure 4. In addition, we can seemore touching band points infigure 2 than infigure 4
since the former is a three-dimensional plot in perspective (wehave plotted the front view of the band structure),
whereas the latter is a projection of the full band structure. For example, instead of seeing fourDirac cones in
figure 4, as happens infigure 2, we just see twoDirac cones because the projection superposes each pair, as
happenswith other touching band points. The colors used infigure 4 represent the logarithmof the IPR (as
defined in equation (29)), blue colors correspond to totally delocalized states and red color represents highly
localizedwave functions. Also observe how flat bands join two inequivalent touching band points, which
suggests that inequivalent touching band points at the same quasienergy have opposite Berry phase. In fact, this
is the case for n=0, which corresponds toDirac cones, labeled by gray dots infigure 4. This also happens for
n 0¹ . Before studying the Berry phase of the touching band points and for the sake of clarity, infigure 5we
present the analytical and the numerical band structure of our system for 1 3s = , 0f = , 6t = , and 0.6l = .

Figure 3.Phase diagramof the system for 1 3s = , 0f = obtained from the analytical expressions equations (25) and (28). Two
pairs of type I touching band points emerge for each value of n, each color corresponds to one value of n. Regions that are not labeled
by n and that are surrounded by thick solid lines correspond to type II touching band points. As can be seen, the phase diagram for type
II touching band points is very complex and is located at high values of the ripple’s amplitude. Therefore, their experimental
observationmay be hard.
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These parameters were chosen in such away that only type I touching band points appear. In panel figure 5(a)we
can observemany touching band points at zero and p quasienergies. Each pair produces flat bands as seen in
panel (b) of the samefigure. It is important to note that the flat bands becomemore extended as the driving
period is increased.

To confirm the previous conjecture about the topological nature of the touching band points, we explicitly
evaluate the Berry phase for type I touching band points.We start by noticing that near the touching band points
the quasienergy spectrum is well described by the one-period time evolution operator, equation (17), expanded

Figure 4. In panel (a)wepresent thewinding of the vector h keff
ˆ ( ), obtained from the analytical expression equation (21) using

k 0.9 3x p= . Thewinding number of edge states that arise from theDirac cones is one. Panel (b), quasienergy band structure
obtained from the numerical diagonalization of equation (12) as a function of kx for 1 3s = , 0f = , 0.5l = , t p= , and for a
nanoribbonwithN=164 atoms, also fixed boundary conditionswere used.Note the excellent agreement between this plot and its
analytical counterpart figure 2. In addition, observe the presence offlat bands at zero and p quasienergies, as predicted in the phase
diagram figure 3 for type I touching band points with n 0, 1, 2= . For n=0we haveDirac cones (indicated by gray dots) shifted
from their original positions due to the deformation field. The colors in the plot represent the logarithmof the inverse participation
ratio, blue color corresponds to totally delocalized states, while red color stems for completely localized states.

Figure 5.Panel (a), quasienergy band structure obtained from the analytical expression (20) as a function of kx for 1 3s = , 0f = ,
0.6l = , and 6t = . The parameters were chosen to be on a phasewhere only type I touching band points are observed. The

maximumvalue of n for these parameters is 4 (see equation (28)). In panel (b), we present the band structure of the systemobtained
from the numerical diagonalization of equation (12) for the same parameters used in panel (a) but using fixed boundary conditions.
The same color code as infigure 4was used. Note the emergence offlat bands that are less localizedwhen comparedwith the ones
observed infigure 4. The agreement between the numerical and analytical results is excellent.
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up to second order in powers of τ. By using the Baker–Campbell–Hausdorff formula in equation (17), one gets,

H H Hk k k k, exp i , 2 . 301
2

1 0 t t t» - +( ) { ( ) [ ( ) ( )] } ( )

Sincewe are just interested inwhat happens in the neighborhood of touching band points, we expand
equation (30) around k k,x y* *( ). It is straightforward to show that equation (30) can bewritten as

q q h h, , exp i , 31x y T T st » -( ) [ ˆ · ] ( )

where q k kx x x*= - , q k ky y y*= - , h hT T= ∣ ∣, and the vector hT is given by,
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Finally, the Berry phase can be readily obtained from the effectiveHamiltonian h hT T sˆ · . Aswe prove in
appendix B, the Berry phase, Cg , is non-vanishing for touching band points at kx

+, in fact, its value is Cg p= . For
touching band points at kx

- the Berry phase takes the opposite value as for kx
+, this is, we have Cg p= - .

Therefore flat bands joining two touching band points with opposite Berry phase will emerge. Needless to say
that these touching band points are topologically protected, soflat bands are topologically non-trivial.

4.2. Type II
Nowwe analyze the edge states originated from type II touching band points. First, we obtain the quasienergy
band structure from the numerical diagonalization of equation (12) for a set of parameters within one of the
regions II of the diagramphasefigure 3. Infigure 6, we show such band structure for 1 3s = , 0f = , 1l = ,

5.46t = , andN=164, and obtained using fixed boundary conditions. Observe that infigure 4(b) besides the
type I touching band points there is one pair of type II touching band points. As in the case of type I touching
band points, edge states emerge from type II touching band points, these edge states seem to be alsoflat bands.
However, as edge states approach kx=0, they are no longer flat bands but they become dispersive delocalized
states, see the inset infigure 6(b), where a zoom around p quasienergy is shown. To get further insight about

Figure 6.Panel (a).Winding of the vector h keff
ˆ ( ) obtained from the analytical expression equation (21) for k 0.9 3x p= , 1 3s = ,

0f = , 5.46t = , and 1l = . Byfixing kx, we are studying a 1D slice of the system. The topological properties of this 1D slice are given
by thewinding of the unit vector h keff

ˆ ( ). A non-zerowinding number is a signature of non-trivial topological properties. Note that the
winding number for this particular case is 6. Panel (b). Quasienergy band structure obtained from the numerical diagonalization of
equation (12) as a function of kx for 1 3s = , 0f = , 5.46t = , 1l = , andN=164 using fixed boundary conditions. The same
color code as in figure 4was used. Observe that for type II touching band points flat bands are less localizedwhen comparedwith
type I.
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the edge states that emerge from type II touching band points we plotted, infigure 7, the analytical and
numerical quasienergy band structure for 1 3s = , 0f = , 0.9l = , and 7.5t = . Observe that the agreement
between the numerical (panel b)) and analytic (panel a)) results is quite good. As before, the edge states that
appear in panel (b) are dispersive and join two inequivalent touching band points. In addition, the edge states in
figure 7 are less localized that the ones infigure 5.

The fact that these edge states start and end at type II touching band points suggest that they have non-trivial
topological properties. To study the topological properties of this kind of edge states we cannot proceed as we did
with type I touching band points since type II touching band points do not correspond to points at where
Hamiltonians (15) commute. Therefore, we analyze the topological properties of a 1D slice of the system, in
otherwords, we study our system for afixed kx. Once that we havefixed kx, the topological properties can be

obtained from thewinding of the unit vector heff
ˆ that appears in the effectiveHamiltonian equation (19), since a

non-vanishingwinding number is a signature of non-trivial topological properties. If heff
ˆ , forfixed kx, has a

non-vanishingwinding number around the origin, then the 1D slice has non-trivial topological properties and

thewhole 2D system is topologically weak [85–87]. Infigure 6(a)we show thewinding of the unit vector heff
ˆ as a

function of ky obtained from the analytical expression equation (21) for k 0.9 3x = , 1 3s = , 0f = ,
5.46t = , and 1l = . As clearly seen in thefigure, thewinding number is 6, whichmeans that our 1D slice has

non-trivial topological properties and that thewhole 2D system is topologically weak.

5. Conclusions

Wehave studied the case of a time-periodically driven rippled ZGN.We obtained the quasienergy spectrumof
the time-evolution operator. As a result, two types of touching band points were found for a special value of the
corrugationwavelength ( 1 3s = ). Each type produces different edge states. For type I edge states, we found
that the edge states areflat bands joining two inequivalent touching band points with opposite Berry phase, this
was confirmed by the analytical evaluation of the Berry phase.On the other hand, type II edge states were found
to have a topological weak nature. This was done by a numerical calculation of thewinding number of a 1D slice
of the system, in other words, by looking at the topological properties of our system for afixed kx. Using this
previous information, the phase diagramof the systemwas built. Tofinish, we stress out that the experimental
realization of ourmodel can be very challenging, however, there are some proposed experiments for similar
situations [61, 88, 89]. Experimentally is possible to create a 1Duniaxial ripple of graphene by growing it over a

Figure 7.Panel (a), quasienergy band structure obtained from the analytical expression (20) as a function of kx for 1 3s = , 0f = ,
0.9l = , and 7.5t = . These parameters were chosen to have types I and II touching band points. In panel (b)wepresent the band

structure of the systemobtained from the numerical diagonalization of equation (12) for the same parameters as in panel (a), but using
fixed boundary conditions. The same color code as infigure 4was used.Due to the presence of type II touching band points, dispersive
edge states appear. These dispersive edge states are almost extended. Once again the agreement between the numerical and analytical
results is excellent.
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substrate [70]. Then the driving can be achieved by time-periodically applying pressure to thewhole system (i.e.
to the graphene ribbon and substrate). Time scales of femto seconds are needed to observe the phenomena
discussed above, a fact that requires the use of, for example, femto lasers of Ti-Sapphire to induce deformations.
As an alternative, optical lattices can be used since the hopping parameters can be tailored at will [88, 89].

Finally, it is important to remark that for observing the edge states studied here, the time driving layout does
not need to be a delta driving. Even a cosine-like time perturbation can be used.However, for the case of a
cosine-like time-perturbation, the effect could be hard to be observed since the secular gaps are usually
smaller [61].
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AppendixA

In this appendixwe analytically obtain the quasienergy spectrum for 1 3s = , 0f = . Aswasmentioned in the
main text, for 1 3s = , the systembecomes periodic along both the x and y directions. As a result, we can
Fourier transform theHamiltonians (9) and (10) taking advantage of such periodicity. By using the following
Fourier transformations,
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and after some algebraicmanipulations, one gets the simplified Fourier transformed version ofHamiltonians
equations (9) and (10),
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1g and 2g have been defined in equation (14). By using equation (A.2), the time evolution operator equation (12)
can bewritten as
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Here H H Hk k k1 0d = -( ) ( ) ( ), and

H Hk k k, exp i exp i . A.50 t td t= - -( ) [ ( )] [ ( )] ( )

Even though,H1 andH0 generally do not commute, one can rewrite equation (A.5) as follows,
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where the effectiveHamiltonian is given by
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the quasienergies ktw ( ) are given by the next relation,
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where h k h k h k1 0d = -( ) ( ) ( ), and
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Finally, the unit vector h keff
ˆ ( ) is given by
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Appendix B

In this appendix, the explicit evaluation of the Berry phase for type I touching band points is done. The Berry
phase is defined as

A kd , B.1C
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g = ∮ · ( )

where A i k k ky y= - á ñ∣ ∣ is the so-called Berry connection (a gauge invariant quantity), and ,k k kx y
 = ¶ ¶( ) is

the gradient operator in themomentum space. Sincewe are interested inwhat happens in the neighborhood of
type touching band points, it is enough to calculate the Berry phase of hT sˆ · , which is the effectiveHamiltonian
in the neighborhood of type I touching band points and that is defined in equation (32).

To obtain the Berry phase, wefirst need to calculate the eigenvectors ofHamiltonian equation (32), it can be
proven that such eigenvectors are given by the following spinors,
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ξ can take the values 1x = + which corresponds to kx*+ +( ) and 1x = - to kx*- +( ). Now, the Berry connection
can be calculated using such spinors, for simplicity we set 1x = , however the result does not depend upon ξ.
After some calculations, one obtains that the Berry connection is,
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Finally, we calculate the Berry phase along a circumference centered at q q 0x y¢ = ¢ = . By using polar
coordinates, defined as, q q cosx q¢ = ¢ and q q siny q¢ = ¢ where q q qx y

2 2 2¢ = ¢ + ¢( ) ( ) ( ) , the Berry connection is
readily obtained,
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A similar calculation can be done for kx*
-( ), which gives Cg p= - .
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