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Abstract

The topological properties of electronic edge states in time-periodically driven spatially-periodic
corrugated zigzag graphene nanoribbons are studied. An effective one-dimensional Hamiltonian is
used to describe the electronic properties of graphene and the time-dependence is studied within the
Floquet formalism. Then the quasienergy spectrum of the evolution operator is obtained using
analytical and numeric calculations, both in excellent agreement. Depending on the external
parameters of the time-driving, two different kinds (types I and II) of touching band points are found,
which have a Dirac-like nature at both zero and =7 quasienergy. These touching band points are able
to host topologically protected edge states for a finite size system. The topological nature of such edge
states was confirmed by an explicit evaluation of the Berry phase in the neighborhood of type I
touching band points and by obtaining the winding number of the effective Hamiltonian for type II
touching band points. Additionally, the topological phase diagram in terms of the driving parameters
of the system was built.

1. Introduction

Graphene, a truly two-dimensional (1D) material, has proven to have very interesting and fascinating
properties [1, 2]. Among them, one can mention its extraordinary mechanical features, which can be used to
tailor the electronic properties, leading to many novel effects in the static case [3-31]. As a matter of fact,
within the tight binding approach and in the absence of interactions between electrons, the effects of a
deformation field applied to graphene can be described via a pseudo magnetic field [22, 32-37]. On the other
hand, graphene possesses interesting topological properties for both the time-independent [38—52] and the
time-dependent cases [53—61]. For instance, in the static case, it has been proven that Dirac cones have a non-
vanishing Berry phase, which means that they are robust against perturbations and disorder [62]. In addition,
since Dirac cones always come in pairs, each cone has an opposite Berry phase as is companion. Hence, as a
consequence of the bulk-edge correspondence, an edge state (such edge state is a flat band for the case of
pristine zigzag graphene nanoribbons (ZGNs)) emerges joining two inequivalent Dirac cones (this is, two
Dirac cones with opposite Berry phase).

On the other hand, by applying a time-dependent deformation field to graphene, new and novel phenomena
appear when compared to the static case [61]. For instance, when a time-dependent in-plane AC electric field is
applied to graphene, it is possible to undergo a topological phase transition from a topological semi-metallic
phase to a trivial insulator one [63]. Similarly, gaps on the energy spectrum of graphene can be opened by
irradiating graphene with a laser by changing its intensity [64, 65]. This gapped phase is also able to host robust
topological chiral Floquet edge states, which are highly tunable [56]. These features are similar to the ones
observed in topological insulators, which also exhibit robust edge states. However, there is another kind of
topological phases akin to gapless systems [66, 67]. Take the kicked Harper model [68] and the kicked SSH
model [69], for instance. In the kicked Harper model via periodic driving, one can create many touching band
points (i.e. points at where the band edges touch each other following a linear dispersion) that can give rise to
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highlylocalized edge states. This occurs because touching band points always come in pairs and each of them
have opposite chirality as its companion [68]. These edge states can be flat bands or dispersive edge states.
Interestingly enough, one can have the same effect on graphene nanoribbons by applying a time-dependent
strain field [61]. The aim of this paper is to show some of these topological properties of gapless systems by
studying a periodically driven uniaxial rippled ZGN. To do that, we use a tight-binding Hamiltonian to describe
the electronic properties of the periodically driven rippled ZGN within the Floquet formalism. The quasienergy
spectrum is then obtained by using an effective Hamiltonian approach.

Itis important to remark that the considered deformation field is a corrugation of the graphene ribbon. Here
we will restrict ourselves to the case of uniaxial ripples, i.e., the height of carbon atoms with respect to a plane is
affected only along one direction (in what follows, we will consider a deformation field applied along the
armchair direction). Therefore, it is necessary to take into account the relative change of the orientation between
m orbitals [9]. Within such approximation, as will be seen later on, the time-dependent deformation field allows
us to create touching band points (touching band points are points at where a band inversion is observed) at zero
or +7 quasienergies. Around such points the quasienergy spectrum exhibits a linear dispersion as in the case of
Dirac cones. The touching band points originated from the time-dependent deformation field can be of two
different kinds: types I and I1, each of them giving rise to topologically protected edge states. For the former type,
we have found topologically protected flat bands at zero and £ quasienergy. Such flat bands join two
inequivalent touching band points with opposite Berry phase. For the latter, dispersive edge states were found
and it was found that they are, at least, topologically weak by obtaining the winding of the effective Hamiltonian.

To finish, it is worthwhile to say that the experimental realization of the deformation pattern here considered
can be difficult since it requires very specific hopping parameters values and very fast time scales. In fact, a similar
experiment was proposed by us in a previous work [61]. However, this experiment was tailored for in-plane
strain [61], and since graphene is almost incompressible, the compressive strain will induce ripples on the
nanoribbon. As aresult, it is clear that ripple effects are important to be studied. Also, it is possible to have a 1D
periodic ripple on graphene. This is done by using thermal enginerring and by growing graphene upon a
substrate to induce an anisotropic strain pattern [70]. The time-dependent deformation field can be obtained by
applying a time-periodic pressure variation to the whole system [61, 71] (the graphene nanoribbon and the
substrate). To observe the results presented below, the pressure needs to be in the frequency range of femto
seconds, which can be very challenging in a real experiment. As an alternative, we propose the use of artificial or
optical lattices, where the hopping parameters of the graphene nanoribbon lattice can be tailored at will [72-77].

The paper is organized as follows, in section 2 we introduce the model. This is, we briefly discuss how to
describe the electronic properties of a rippled ZGN. Then, the time dependence is introduced to the model and
the time-evolution operator of the system is defined. In section 3, we analytically obtain the quasienergy
spectrum of the system via an effective Hamiltonian approach. Also, the location of both types of touching band
points is found and the topological phase diagram of the system is built. The edge states of the system and their
topological properties are analyzed in section 4. Some conclusion are given in section 5. Finally, in the
appendices some calculations regarding the main text are presented.

2. Periodically driven rippled graphene

We sstart by considering a ZGN as the one portrayed in figure 1(a), then we apply an out-of-plane uniaxial
deformation field (a ripple field) along the y-direction given by,

zj = z(yj) = )\cos(27rayj + @), (D

here, y;are the positions of the carbon atoms along the y-direction, ) is the amplitude, o controls the spatial
wavelength, and ¢ is a phase. Since such a deformation field modifies the height of the carbon atoms, their
positions are also modified and can be written as r’ = (r, z( yj)), where r are the carbon atom positions in
unrippled graphene. Within the low energy limit, the electronic properties of a ZGN under a deformation field
along the armchair direction, as the one given by equation (1), are well described by the following 1D tight-
binding effective Hamiltonian [9],

N-1
H(ky) = Z (72 a;j+1b2j + C(kx)’Yzj—lﬂsz,lsz] + h.c, 2
=1

where c(k,) = 2 cos(~/3 k, /2), the operator a; (b;) annihilates an electron at the jth site in the sub lattice A (B),
and Niis the number of atoms per unit cell (see figure 1, at where the unit cell is indicated by solid red lines). ; are
the hopping parameters given by [9],
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Figure 1. Schematic representation of the driving layout. The deformation field is turned off for t = mT, where tis the time, m an
integer number, and T'is the driving period. This situation is shown in panel (a), therein a pristine zigzag graphene nanoribbon (ZGN)
can be seen, which is finite along the y-direction but is infinite along the x-direction. The unit cell of which is indicated by solid red
lines. Atoms belonging to the sub lattice A (B) are indicated by red (green) circles. On the other hand, for = mT the deformation field
is turned on, see panel (b). Note that the distance between carbon atoms remains the same as in pristine graphene but the height of
each atom is modified along the y-direction, such height is given by a spatially periodic function, z(y). Finally, both the pristine and
deformed ZGN's can be mapped onto a quasi one-dimensional (1D) chain. The mapping of the rippled ZGN is presented in panel (c),
therein, the same color code as in (a) is used. The hopping parameters between carbon atoms are denoted by Vs where jis the label that
enumerates the carbon atoms along the y-direction within the unit cell. ¢ (k) is a function of the quasi-momentum along the x-
direction, defined in the main text.

7= l[l + a(l — Nj - Nix )]exp(—368l:1,), (3

where v, = 2.7 eV is the hopping parameter for pristine graphene, I(IJ is the unit vector normal to the pristine
graphene sheet at site j, which has the following form,

A éz - VZ]'
N = —— (4)

A/ 1+ (VZ j)Z
with V = (0, 0,) being the two-dimensional (2D) gradient operator. é, is a unit vector that is perpendicular to
the unrippled graphene sheet, o &~ 0.4 is a constant that takes into account the change of the relative orientation
between 7-orbitals originated from the deformation field, and 3 ~ 3.37 is the decay rate (Griineisen parameter).
Finally, the quantity 6l;, , ; is given by,

Slisrj = =1+ 1+ 20y, — 2P ©)

Itis important to say that all distances, here on, will be measured in units of the interatomic distance between
carbon atoms (a.) in pristine graphene. In a similar way, we will set -y, as the unit of energy. Having said that, it is
noteworthy that the energy spectrum of the Hamiltonian equation (2) have been discussed in a previous work
for the small amplitude limit and for different ripple’s wavelength, see [9]. Also, it is important to say that the
deformation field here considered induces a pseudo magnetic field, since such deformation field modifies the
relative orientation between 7 orbitals. In fact, if we assume that N is a smooth function of the position, the
magnetic flux through a ripple of lateral dimension /and height zis given by [35],

_10A° 'a2z?
N
If we introduce all the numerical values, we obtain ® ~ 10~3®,, where ®, = 27/; /c and cis the speed of light.

Once that the Hamiltonian that describes an uniaxial rippled ZGN has been presented, we proceed to
introduce the time-dependence to our model. We will consider a pulse time-driving layout,

P (6)

Hy(ky) if t<mod(t, T) < t

Hiky if 1 <mod(t, T) < T, @)

H(kx) t) = {

where T'is the driving period and #; is a number such that 0 < # < T. The previous Hamiltonian describes a
driving layout in which for times within the interval (#, T'), the deformation field is turned on, whereas it is
turned off for times within the interval (0, #,). For the sake of simplicity, in what follows we will consider the case
of short pulses, in other words, we will consider the limit 4 — T', which resembles the delta driving case. Thus,
in the delta driving layout, we turn on the deformation field given by equation (1) at times t = mT , while for

t = mT the deformation field is turned off, here m is an integer number. A graphic representation of this driving
layout is shown in figure 1. Within thislimit (4 — T), the time-dependent Hamiltonian (7) takes the following

3
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form,
H (ky, t) = Ho(ky) + Y [Hi(ky) — Ho(k)16(t/T — m), (8)
with the Hamiltonians Hy(k,) and H; (k,) given by,
N—1
Ho(ky) = > volagy byj + c(kaf; byl + hec,, ©)
j=1
and
N—1 )
Hi(ky) = Z [72]‘ ﬂ2'j+1sz + C(kx)72jfla;];1b2j] + h.c. (10)

=1

Before entering into the details of our model, let us briefly discuss the effect of considering a sinusoidal time
perturbation instead of a Dirac delta protocol. The Dirac delta driving is useful because calculations are greatly
simplified and because analytical results can be obtained. One can consider a more realistic time perturbation
but the system must be treated numerically. Consider for example a cosine-like driving, then the quasienergies
of the system are given by the eigenvalues of the so-called Floquet Hamiltonian [78], which is a block diagonal
matrix (for our case, each blockis N x N matrix with N being the number of atoms per unit cell). By truncating
such Hamiltonian (this is, by considering only the first three blocks of such Hamiltonian), one can obtain
numerically the quasienergies. By using this kind of driving as we have proven in a previous work [61] for a
model quite similar to the one studied here, that the secular gaps are reduced in size when compared with the
delta driving. Additionally, the flat bands become dispersive edge states [61]. Summarizing, the emergence of
highlylocalized edge states is not modified if a more realistic driving layout is considered.

To study the time evolution of our system, we define the unitary one-period time evolution operator,
U (ky, T),in the usual form,

Uk, T)tpr, (1)) = |t (t + T)), (1)

where |1)_()) is the system wave function for a given k,. The main advantage of using a delta kicking is that the
time evolution operator is easy to find. For this case, we have,

T
U(r) = Texp[—if H(k,, t)dt/ﬁ]
0
= exp[—iT (Hi(ky) — Ho(ky))lexp[—iTHo(ko)], (12)

here 7 denotes the time ordering operator and 7 = T// . In general Hamiltonians H; and H, do not commute,
therefore, it is a common practice to study the eigenvalue spectrum of the matrix representation of equation (12)
via an effective Hamiltonian defined as

U ks, T) = exp[—iTH. (ky)]. (13)

Then, the eigenvalues of the time-evolution operator, which we denote by 7w, are the eigenvalues of the effective
Hamiltonian, 7H. (k,). Since Tw are just defined up to integer multiples of 27, they are called the quasienergies
of the system.

Once that the time-dependence have been introduced to our model, we have four free parameters, three
owing to the deformation field (), o, and ¢) and one due to the driving layout (7). One can study the quasienergy
spectrum for a wide range of parameters, however just a few set of parameters allows us to do analytical
calculations. Among them, one can mention the case ¢ = 1/3and ¢ = 0 for which the system becomes
periodic along both the x-direction and the y-direction. This is due to the fact that the hopping parameters, for
this particular case, just take two different values, namely,

%=1+ @ - e Pl B~ G X+ 1], (14)

3

where §; = 1/4 for oddjand §=3/2 otherwise.

Itis noteworthy that for o = 1/3, our system is quite similar to the system studied in [61], therein a
periodically driven uniaxial strained ZGN is studied. The main result of such paper is the emergence of
topologically protected flat bands at both zero and 4+ quasienergies. The emergence of these flat bands can be
understood in terms of a kind of Weyl points that appear each time that the bands are inverted [79]. Therefore,
we expect our model to have topological flat bands and Weyl points. This conjecture is confirmed in the next
section where the touching band points of the quasienergy spectrum are found.

4
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3. Touching band points

Our system can be studied numerically for any combination of driving parameters. From an analytical point of
view, only few cases are simple enough to carry on calculations. In fact, for inconnmensurate o, the problem is
very complex since quasiperiodicity arises and requires the use of rational approximants and renormalization
approaches [80—83]. Here we have chosen to present simple analytical cases and compare it with the numerical
results. In particular, we will study the quasienergy touching band points for o = 1/3, ¢ = 0 and fixed values of
Aand 7. For this case, the system becomes periodic along both the x- and y-directions if cyclic boundary
conditions are used in the y axis. Nanoribbons are thus studied by changing the boundary conditions. This
allows to define the Fourier transformed version of Hamiltonians equations (9) and (10),

Ho(K) = ho()ho(k) - &

Hk) = (k) - o (15)
by using a vector in reciprocal space k = (ky, k). 0; (i = x, y, z)arethe2 x 2 Pauli matrices and
ho(k) = ho(k)/|he ()|, hy(k) = hy(k)/|h (k) |. Here, ho(k) and hy (k) denote the norm of hy(k) and hy(k)

respectively. hy(k) and h;(k) have components which are defined in appendix A. The k-dependent time
evolution operator, equation (12), now takes the following form,

Uk, 7) =S Uk, 7) @ [k, k), (16)

k,

where,
Uk, 7) = exp[—iTéH (k)] exp[—iTHy (k)] 17)
and 6H (k) = H;(k) — Hy(k). To obtain the quasienergy spectrum we use an effective Hamiltonian approach.
Let us define the effective Hamiltonian as,
Uk, T) = exp[—iTH.g (K)]. (18)
Since the Hamiltonians Hy (k) and Hj(k) are2 x 2 matrices, it is possible to analytically obtain H.g (k) using
the addition rule of SU(2) (see appendix A for details). After some calculations and using equations (15) and (17),
one gets,
Heir (k) = w(0hr (k) - o, (19)
and as before, o is the Pauli vector. The quasienergies, 7w (k), are given by the following expression,
cos[Tw(k)] = cos[T 6h(k)]cos[Thy(k)]
—ho(k) - 5Ah(k) sin[7 6h(k)]sin[7ho(k)], (20)
where dh(k) = h;(k) — hy(k),and fleff(k) is given by,
-
sin[Tw (k)]

-1 ~
——Thy(k)si k k
+ inlw (k)][ o(k)sin[7hg (k)] cos[T6h (k)]]

hei(k) = [Sh(K) sin[7 §h(K)]cos[Tho(K)]]

+ _—1 [6h(k) x ho(K)sin[78hK)]sin(Tho[K)]]. (21)
sin[Tw (k)]
Since we are looking for touching band points, it is useful to plot the quasienergy spectrum for some
characteristic values of A and 7. In figure 2 we plot the quasienergy band structure for o = 1/3, ¢ = 0, A = 0.5,
and 7 = 7. Note that apart the Dirac cones (indicated by yellow dots in the figure), there are other touching
band points at zero and +7 quasienergies.

From figure 2, we can see that touching band points always emerge at zero or -+ quasienergy, then it follows
that they can be obtained by imposing 7w (k*) = n7, where nis an integer number and k* = (kJ5, k) are the
special points where this happens. By substituting k = k* in equation (20), the touching band points are given
by the solutions of the following equation,

+1 = cos[7 Sh(k®)]cos[Thy(k*)]
— ho(k*) - Sh(k®)sin[ 6h(&*)]sin[7ho (k)] (22)
A careful analysis of equation (22) shows two possible solutions depending on the value of the dot product
hy(k*) - dh(k™). In other words, there are two kinds of touching band points that we have labeled by types I and

I1. For the type I, it is required that ho(k*) - 6Ah(k*) = =1, which is equivalent to ask the commutator
[H,(k*), Hy(k™)]to vanish. For type II, it is necessary to impose two simultaneous restrictions, the first one is

5
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3k, /7

Figure 2. Quasienergy band structure as function of k for 0 = 1/3, ¢ = 0, A = 0.5,and 7 = 7 obtained from the analytical
expression equation (20). Note that besides the Dirac cones (which are shifted from their original positions due to the ripple field),
indicated by yellow dots, others touching band points with linear dispersion around zero and 7 quasienergy emerge.

ho(k*) - h(k*) = +1, whereas the second one is given by cos[76h(k*)] cos[Thy(k*)] = +1, this means that
type Il touching band points never occur at ky* = 0, £27/3. It what follows, we will study the necessary
conditions for having these kinds of touching band points. After that, the topological phase diagram of the
system is obtained.

3.1. Typel

Although this kind of touching band points have been studied in a previous work for a very particular case of
hopping parameters [61], here we obtain the touching band points for the general case of an effective linear chain
with two different hopping parameters, say -, and -y,. We start our analysis by noticing from equation (A.9), that

ﬁo(k*) . 6Ah(k*) = Z1isfulfilled for k;,k = 0, 27 /3, needless to say that such values of k, give the edges of the
quasienergy band structure along the y-direction, we stress out the fact that at the edges of the quasienergy band
structure, Hamiltonians Hy (k) and H; (k) commute. By substituting k; into equation (20), one gets,

Twiky) = Ty2 £ 27y cos(N3 k. /2), (23)
where the plus sign (+) stems for k;,k = 0, while the minus sign (—) stems for k;k = £27/3.Now, in order to

have touching band points, two band edges must touch each other. This occurs whenever 7w (k)) = dnn (n
being an integer number). By using equation (23), we find that k. has two possible solutions given by,

2 .
kj(+) =4 farccos[u]’

2™V
kf(’) = :I:iarccos L . (24)
ﬁ 2

Asbefore, k¥ stems for k;,k = 0, while k(7 stems for k;‘ = 427/3. From the structure of equation (24), it is
easy to see that touching band points always come in pairs, as in the case of Weyl and Dirac points. We have to
mention that for n = 0 and for odd n there are two pairs of touching band points, however this is not the case for
even n (n different from zero) for which just one pair of touching band points emerge. This can be understood by
looking at equation (24). It is readily seen that for even n both k, and k, are the same. On the other hand, the
casen = 0 (i.e. the time-independent touching band points) worths special attention, since in this case the
touching band points correspond to Dirac cones shifted from their original position due to the deformation field
[84]. As is well known, the Dirac cones give rise to flat bands in the time-independent case when the nanoribbon
is considered to be finite, this is still true even in the presence of a time-dependent deformation field [61]. As will
be seen later on, touching band points for n = 0 also give rise to topologically protected flat bands.

Itis useful to obtain the conditions to have touching band points, since this sheds light about the topological
phase diagram of the system. Such information can be readily obtained by observing that in order to have real
solutions for equation (24), the following condition must be satisfied,

|nm — 77| < 2. (25)

In other words, there is a critical treshold for 7, say 7, for having touching band points. Such value depends upon
the ripple’s amplitude via -, and , (see equation (14)). The explicit form of 7. can be obtained from the extremal
limits of equation (25), one can prove that is given by,

™

= (26)
2Zn+m

Tc

Itis important to say that each time that 7 reaches an integer multiple of 7., new touching band points will
emerge, in other words, there will be new pairs of touching band points for 7 = n7., where nis an integer

6
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number. Also observe that bands will touch each other at +7 quasienergy if nis odd, whereas they will touch
each other at zero quasienergy for even or vanishing #n. From equation (25), we can construct the phase diagram
of type I touching band points, however, this phase diagram will be incomplete since it will not contain the
information of the type II touching band points. Therefore, we leave the construction of the phase diagram to be
done after analyzing type II touching band points.

To finish, let us confirm our results. In figure 2 weused A = 0.5and 7 = , this is, we have ZTj <7< 3TC+.
Therefore, there must be six pairs of touching band points, three pairs at zero quasienergy (two forn = 0and
one forn = 2)and two pairs at 7 quasienergy (n = 1). This is in completely agreement with figure 2.

3.2. Typell
Let us start by determining the location of this kind of touching band points. To do that, we set 76h = n;7 and
Thy = my7 in equation (20), where n, and n, are integer numbers. After some algebraic manipulations, one
obtains,
2,2 2,2
2 (= 12+ (= D - 2)(1 - 25

cos(V3k/D) 4n— DO — )

nim? — 4cos*(\3k*/2) — 1

cos(3k*/2) = 27)
7 4cos(~/3k*/2)
Once again, we can obtain the conditions for having these kind of touching band points by noticing that to
ensure having real solutions in equation (27), the following conditions need to be held altogether,
nim? 2 nim?
= - D - 21 - )
0 < <1
4n — Dn — )
2.2 2 * —
nym* — 4cos (\/g*kx/Z) 1 <1 (28)
4cos(\/3k¥/2)

It is worthwhile to mention that the band edges will touch each other at -7 quasienergy if n, is even and n, is
odd or vice versa, whereas they will touch each other at zero quasienergy for either #, and n, even or odd.

The conditions given by equation (28) add new phases to the phase diagram of the system. Such diagram will
be built in the next section.

3.3. Topological phase diagram

In figure 3, the phase diagram for types I and II touching band points is presented, such diagram was built from the
expressions for the critical values of 7 obtained from equation (26) and (28). Therein, in figure 3, type I touching
band points are labeled by n and each single value of 11 gives rise to two pairs of this kind of touching band points. For
instance, the region label by n = 0, 1 has four pairs of touching band points, two pairs corresponding ton = 0 atzero
quasienergy (Dirac cones, as was discussed above) and the others two pairs at +7 quasienergy corresponding to

n = 1. Note also that each value of n corresponds to a well defined region in the phase diagram. When it concerns to
type II touching band points things become more complicated since each pair of integers (115, 11,) results in very
intricate regions on the phase diagram, as is clearly seen in figure 3 in the regions labeled by II. Additionally, for
having type II touching band points high values of the ripple’s amplitude are required, which makes them difficult to
be observed experimentally since non-linear effects may appear before reaching this regimen. Finally, note that the
fact that both kinds of touching band points always come in pairs suggests that they can give rise to topologically
protected edge modes if the system is considered to be finite. In fact, this is the case as is proven below.

4. Edge states

In this section we discuss the emergence and the topological properties of edge states in a finite ZGN. In the
previous section we found touching band points at which the edges of the quasienergy spectrum cross each
other, which is a signature for edge states. In order to confirm if edge states emerge, we calculate the quasienergy
spectrum for a finite system. To do that, a numerical diagonalization of the matrix representation of the time
evolution operator equation (12), as a function of k,, is done for fixed o, ¢, A and 7. We also study the localization
properties of the wave functions of such states. Using the logarithm of the inverse participation ratio (IPR),
which is defined as,
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Figure 3. Phase diagram of the system for o = 1/3, ¢) = 0 obtained from the analytical expressions equations (25) and (28). Two
pairs of type I touching band points emerge for each value of 11, each color corresponds to one value of . Regions that are not labeled
by 1 and that are surrounded by thick solid lines correspond to type II touching band points. As can be seen, the phase diagram for type
II touching band points is very complex and is located at high values of the ripple’s amplitude. Therefore, their experimental
observation may be hard.

S S .
(B) = = (29)

where 1 (j) is the wave function at site j for a given energy (or quasienergy) E. The IPR is a measure of the wave
function localization [4]. The closer the IPR to zero the more localized the wave function is. Whereas for the IPR
tending to —1, we have completely delocalized wave functions. Having said that, we proceed with the study of
the edge states.

4.1. Typel

Let us consider first the case of type I touching band points. We start by obtaining the quasienergy band structure
as a function of k, via the numerical diagonalization of the matrix representation of equation (12). In figure 4 we
show the resulting quasienergy band structureforc = 1/3, ¢ = 0, A = 0.5, 7 = 7, N = 164 atoms and
obtained by using fixed boundary conditions. We used the same condition as in the analytically obtained plot in
figure 2(b). Note the excellent agreement between the numerical and the analytical results.

In figure 4(a) we also show the winding number of the effective Hamiltonian, which is basically the winding
number of the unit vector defined in equation (21) for k, = 0.97/+/3, for a phase with flat bands joining two
inequivalent Dirac cones. As can be seen, the winding number is one, as expected from the topological properties
of afinite ZGN.

The main difference between figures 4 and 2 (apart from the fact that figure 2 is a three-dimensional plot and
figure 4 is the projected band structure as a function of k,) is that, for a finite nanoribbon, highlylocalized edge
modes are clearly seen in figure 4. In addition, we can see more touching band points in figure 2 than in figure 4
since the former is a three-dimensional plot in perspective (we have plotted the front view of the band structure),
whereas the latter is a projection of the full band structure. For example, instead of seeing four Dirac cones in
figure 4, as happens in figure 2, we just see two Dirac cones because the projection superposes each pair, as
happens with other touching band points. The colors used in figure 4 represent the logarithm of the IPR (as
defined in equation (29)), blue colors correspond to totally delocalized states and red color represents highly
localized wave functions. Also observe how flat bands join two inequivalent touching band points, which
suggests that inequivalent touching band points at the same quasienergy have opposite Berry phase. In fact, this
is the case for n = 0, which corresponds to Dirac cones, labeled by gray dots in figure 4. This also happens for
n = 0. Before studying the Berry phase of the touching band points and for the sake of clarity, in figure 5 we
present the analytical and the numerical band structure of our system for o = 1/3, ¢ = 0, 7 = 6,and A = 0.6.
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Figure 4. In panel (a) we present the winding of the vector h.g(k), obtained from the analytical expression equation (21) using

k. = 0.97//3.The winding number of edge states that arise from the Dirac cones is one. Panel (b), quasienergy band structure
obtained from the numerical diagonalization of equation (12) as a function of k. for o = 1/3, » = 0, A = 0.5, 7 = m,and fora
nanoribbon with N = 164 atoms, also fixed boundary conditions were used. Note the excellent agreement between this plot and its
analytical counterpart figure 2. In addition, observe the presence of flat bands at zero and 7 quasienergies, as predicted in the phase
diagram figure 3 for type I touching band points with n = 0, 1, 2. For n = 0 we have Dirac cones (indicated by gray dots) shifted
from their original positions due to the deformation field. The colors in the plot represent the logarithm of the inverse participation
ratio, blue color corresponds to totally delocalized states, while red color stems for completely localized states.
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Figure 5. Panel (a), quasienergy band structure obtained from the analytical expression (20) as a function of k, for o = 1/3, ¢ = 0,
A = 0.6,and 7 = 6. The parameters were chosen to be on a phase where only type I touching band points are observed. The
maximum value of n for these parameters is 4 (see equation (28)). In panel (b), we present the band structure of the system obtained
from the numerical diagonalization of equation (12) for the same parameters used in panel (a) but using fixed boundary conditions.
The same color code as in figure 4 was used. Note the emergence of flat bands that are less localized when compared with the ones
observed in figure 4. The agreement between the numerical and analytical results is excellent.

These parameters were chosen in such a way that only type I touching band points appear. In panel figure 5(a) we
can observe many touching band points at zero and +7 quasienergies. Each pair produces flat bands as seen in
panel (b) of the same figure. It is important to note that the flat bands become more extended as the driving
period is increased.

To confirm the previous conjecture about the topological nature of the touching band points, we explicitly
evaluate the Berry phase for type I touching band points. We start by noticing that near the touching band points
the quasienergy spectrum is well described by the one-period time evolution operator, equation (17), expanded
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Figure 6. Panel (a). Winding of the vector fleff(k) obtained from the analytical expression equation (21) for k, = 0.97/ J3,0=1/3,
¢ = 0,7 = 5.46,and A = 1. By fixing k,, we are studying a 1D slice of the system. The topological properties of this 1D slice are given
by the winding of the unit vector h.g(k). A non-zero winding number is a signature of non-trivial topological properties. Note that the
winding number for this particular case is 6. Panel (b). Quasienergy band structure obtained from the numerical diagonalization of
equation (12) asa function of k, for o = 1/3, ¢ = 0, 7 = 5.46, A = 1,and N = 164 using fixed boundary conditions. The same
color code as in figure 4 was used. Observe that for type II touching band points flat bands are less localized when compared with
typel.

up to second order in powers of 7. By using the Baker—Campbell-Hausdorff formula in equation (17), one gets,
Uk, 7) = exp{—itH (k) + T*[Hi(k), Ho(k)] /2}. (30)

Since we are just interested in what happens in the neighborhood of touching band points, we expand
equation (30) around (k, k;,k ). It is straightforward to show that equation (30) can be written as

uaq,, q, T) = exp[—ihr flT - o], (31)
where g, =k, — k;k >4, = k, — k;,k , hy = |hz|, and the vector hy is given by,
hr = A(A, 7)q,8: + B(A, 79,8, + C(A, 7)q,;, (32)
with
2
Al Y2 T) =0T + ™ \/3 + 3(@) )
2™
B, 72, T) = 3772/2,
Ct 7 1) = 701 = 10 = 77 (33)

Finally, the Berry phase can be readily obtained from the effective Hamiltonian hr hy - o. As we prove in
appendix B, the Berry phase, 7, is non-vanishing for touching band points at k, , in fact, its value is 7. = 7. For
touching band pointsat k, the Berry phase takes the opposite value as for k,, this is, we have y, = —.
Therefore flat bands joining two touching band points with opposite Berry phase will emerge. Needless to say
that these touching band points are topologically protected, so flat bands are topologically non-trivial.

4.2. Typell

Now we analyze the edge states originated from type II touching band points. First, we obtain the quasienergy
band structure from the numerical diagonalization of equation (12) for a set of parameters within one of the
regions II of the diagram phase figure 3. In figure 6, we show such band structureforoc = 1/3,¢ = 0, A = 1,
T = 5.46,and N = 164, and obtained using fixed boundary conditions. Observe that in figure 4(b) besides the
type I touching band points there is one pair of type Il touching band points. As in the case of type I touching
band points, edge states emerge from type II touching band points, these edge states seem to be also flat bands.
However, as edge states approach k, = 0, they are no longer flat bands but they become dispersive delocalized
states, see the inset in figure 6(b), where a zoom around +7 quasienergy is shown. To get further insight about

10
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Figure 7. Panel (a), quasienergy band structure obtained from the analytical expression (20) as a function of k, for o = 1/3, ¢ = 0,

A = 0.9,and 7 = 7.5. These parameters were chosen to have types I and II touching band points. In panel (b) we present the band
structure of the system obtained from the numerical diagonalization of equation (12) for the same parameters as in panel (a), but using
fixed boundary conditions. The same color code as in figure 4 was used. Due to the presence of type II touching band points, dispersive

edge states appear. These dispersive edge states are almost extended. Once again the agreement between the numerical and analytical
results is excellent.

the edge states that emerge from type II touching band points we plotted, in figure 7, the analytical and
numerical quasienergy band structure for o = 1/3, ¢ = 0, A = 0.9,and 7 = 7.5. Observe that the agreement
between the numerical (panel b)) and analytic (panel a)) results is quite good. As before, the edge states that
appear in panel (b) are dispersive and join two inequivalent touching band points. In addition, the edge states in
figure 7 are less localized that the ones in figure 5.

The fact that these edge states start and end at type II touching band points suggest that they have non-trivial
topological properties. To study the topological properties of this kind of edge states we cannot proceed as we did
with type I touching band points since type II touching band points do not correspond to points at where
Hamiltonians (15) commute. Therefore, we analyze the topological properties of a 1D slice of the system, in
other words, we study our system for a fixed k... Once that we have fixed k,, the topological properties can be
obtained from the winding of the unit vector heg that appears in the effective Hamiltonian equation (19), since a
non-vanishing winding number is a signature of non-trivial topological properties. If h.;, for fixed k,, hasa
non-vanishing winding number around the origin, then the 1D slice has non-trivial topological properties and
the whole 2D system is topologically weak [85-87]. In figure 6(a) we show the winding of the unit vector heg asa
function of k, obtained from the analytical expression equation (21) for k, = 0.9/ J3,0=1/3,¢ =0,

T = 5.46,and A = 1. As clearly seen in the figure, the winding number is 6, which means that our 1D slice has
non-trivial topological properties and that the whole 2D system is topologically weak.

5. Conclusions

We have studied the case of a time-periodically driven rippled ZGN. We obtained the quasienergy spectrum of
the time-evolution operator. As a result, two types of touching band points were found for a special value of the
corrugation wavelength (o = 1/3). Each type produces different edge states. For type I edge states, we found
that the edge states are flat bands joining two inequivalent touching band points with opposite Berry phase, this
was confirmed by the analytical evaluation of the Berry phase. On the other hand, type II edge states were found
to have a topological weak nature. This was done by a numerical calculation of the winding number of a 1D slice
of the system, in other words, by looking at the topological properties of our system for a fixed k. Using this
previous information, the phase diagram of the system was built. To finish, we stress out that the experimental
realization of our model can be very challenging, however, there are some proposed experiments for similar
situations [61, 88, 89]. Experimentally is possible to create a 1D uniaxial ripple of graphene by growing it over a
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substrate [70]. Then the driving can be achieved by time-periodically applying pressure to the whole system (i.e.
to the graphene ribbon and substrate). Time scales of femto seconds are needed to observe the phenomena
discussed above, a fact that requires the use of, for example, femto lasers of Ti-Sapphire to induce deformations.
As an alternative, optical lattices can be used since the hopping parameters can be tailored at will [88, 89].
Finally, it is important to remark that for observing the edge states studied here, the time driving layout does
not need to be a delta driving. Even a cosine-like time perturbation can be used. However, for the case of a
cosine-like time-perturbation, the effect could be hard to be observed since the secular gaps are usually
smaller [61].
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Appendix A

In this appendix we analytically obtain the quasienergy spectrum for ¢ = 1/3, ¢ = 0. As was mentioned in the
main text, for o = 1/3, the system becomes periodic along both the x and y directions. As a result, we can
Fourier transform the Hamiltonians (9) and (10) taking advantage of such periodicity. By using the following
Fourier transformations,

1 ial
aj= Z e 3K/ 2,
N/2 %
1 il
bj = e /2y (A1)
=N '

and after some algebraic manipulations, one gets the simplified Fourier transformed version of Hamiltonians
equations (9) and (10),

Hy(k) = hy(K)ho() - &
Hi(k) = h(Qh (k) - o, (A.2)

where k = (k, k), 0; (i = x, y, z)arethe2 x 2 Pauli matrices, lfo(k) = ho(k)/|h0(k)|, };I(k) = h1/|h1 9]
[ho(k) (B (k)) being the norm of hy(k) (h;(k))]. ho(k) and h;(k) have components given by

héx)(k) =2cos(\3ke/2) + cos(3k, /2),

h (k) = sin(3k, /2),

b (k) = 271 cos(v/3ky/2) + 72 cos(3k, /2),

1 (k) = 7, sin(3k, /2). (A3)

<, and +, have been defined in equation (14). By using equation (A.2), the time evolution operator equation (12)
can be written as

Uk, 7) = S Uk, 7) ® |k,) (k. (A4)

ky

Here 6H (k) = H,(k) — Hy(k),and
UKk, 7) = exp[—iTéH (k)]exp[—iTH((k)]. (A.5)
Even though, H; and Hj generally do not commute, one can rewrite equation (A.5) as follows,
Uk, ) = exp[—iTHeg (K)], (A.6)
where the effective Hamiltonian is given by
Het (1) = w(0het (k) - 7, (A7)
the quasienergies 7w (k) are given by the next relation,
cos[Tw(k)] = cos[T dh(k)]cos[Thy(Kk)]
— ho(k) - Shk)sin[7 8h(K)]sin[ThoK)], (A.8)
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where dh(k) = h;(k) — hy(k), and

~ ~ 1 \/g
ho(k) - Sh(k) = ——M — 2| M2
o(k) - oh(k) T @O 8h(o [4(71 1)cos ( ; kx)]

! SRR INED
+ o009 [2(71+72 2)cos( 5 kx)cos( 5 )]

v — 1
ho(k)Sh(k)”

Finally, the unit vector f)eff(k) is given by

(A.9)

-1

m [6h(k) sin[T 6h(k)]cos[Tho(k)]]

herr(l) =

-1 A )
+ m [ho(k)sin[Thq (k)] cos[T6h (k)]]

-1

+ _7[5hA(k) x ho(K)sin[78hK)]sin(Tho[K)]]. (A.10)
sin[Tw (k)]

Appendix B

In this appendix, the explicit evaluation of the Berry phase for type I touching band points is done. The Berry
phase is defined as

%:éAdk (B.1)

where A = —i(¢x| Vi[¢)y) is the so-called Berry connection (a gauge invariant quantity),and Vi = (0, 0y) is
the gradient operator in the momentum space. Since we are interested in what happens in the neighborhood of
type touching band points, it is enough to calculate the Berry phase of hy - &, which is the effective Hamiltonian
in the neighborhood of type I touching band points and that is defined in equation (32).

To obtain the Berry phase, we first need to calculate the eigenvectors of Hamiltonian equation (32), it can be
proven that such eigenvectors are given by the following spinors,

cqy
1+
i) = —= o
q Nl o
Sorg! _ tay
el Qq 1 3 hT
e~y [1 — Cay
1 B hr
[y = —— , (B.2)
q N T
B hy
where
qx=4q,/A
qy=4q,/B (B3)
and a4 is given by,
!/
agy = tan™! (q—/) (B.4)
qx
€ can take the values £ = +1which corresponds to +-k*™ and ¢ = —1to —k*"). Now, the Berry connection

can be calculated using such spinors, for simplicity we set £ = 1, however the result does not depend upon &.
After some calculations, one obtains that the Berry connection is,

1 C
A= E(l — B—th/y)Vq’Oéq/, (BS)
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where
—q'yé+qx 8
@ + (@)
Finally, we calculate the Berry phase along a circumference centered at ', = q’, = 0. By using polar

coordinates, defined as, q'x = g’ cosf and q', = g’ sin @ where (9')* = (¢'x)* + (¢',)% the Berry connection is
readily obtained,

Vyoy = (B.6)

2T

Yo = A - dq
0

C.
1 por 5sinf
:—f l - ————=|df=m. (B.7)
20 1+ %Sinzﬂ
A similar calculation can be done for k™), which gives v, = —.
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