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Abstract

Keywords:

We study the coherent reflectance of electromagnetic waves from a ran-
dom system of identical spheres with radius comparable to the wave-
length of the incident radiation. An effective-medium theory for this
system is developed and it is found that the effective—medium must
posses an effective magnetic permeability, even if the spheres are non—
magnetic, in order to be consistent with continuum electrodynamics.
The physical origin of this magnetic ¢ffect is discussed and we conclude
that it is due to the induction of closed currents in the spheres, being
then analogous to the mechanism proposed by Ampére when he tried to
explain the origin of magnetism. It turns out that the effective magnetic
permeability as well as the effective electric permittivity depend on the
angle of incidence and the polarization of the incident wave. We de-
rive formulas for the coherent reflectance from a half-space and display
numerical results.

granular matter, electrodynamics, optical properties, random system,
effective-medium theory

1. INTRODUCTION

The concept of an effective medium has been extremely useful in the
description of the electromagnetic response of granular matter [1). By
granular matter we will understand a very general class of materials
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composed by granular inclusions of one type of material embedded in
an otherwise homogeneous matrix of another type of material. By elec-
tromagnetic response we mean the polarization and magnetization pro-
cesses induced in the material by an externally applied electromagnetic
field. In electrodynamics of continuous media one introduces the con-
cept of polarization and magnetization fields. They are called material
fields because they are defined only in the regions occupied by the mate-
rials, they are attached to their presence, and outside these regions these
fields vanish. The optical properties of the material are determined by
the manner in which these material fields respond to the applied one,
and this response is usually given in terms of response functions like
the dielectric function and the magnetic susceptibility, which will be
generally referred as the optical coefficients of the material.
Furthermore, one might think that behind all these concepts there is
the assumption of a continuous material and that the values acquired
by the material fields correspond to a quantitative measure of the in-
duced polarization and magnetization phenomena. Nevertheless, one
also knows that in essence all matter is granular, after all, one can think
that any piece of matter is made of a large collection of small grains,
these grains being the atoms and molecules. Therefore, due to this gran-
ular structure the induced electromagnetic field within any material is
a highly varying function of space and time. This field is usually called
the microscopic field. But when this microscopic field is decomposed
as the sum of an average component plus a fluctuation component, one
finds that the length scales of their spatial variations are very different,
while the average component varies on a length scale of the order of
the wavelength of the incident field, the fluctuation component varies
on a length scale of atomic dimensions. Now, the fields that appear in
Maxwell’s equations of continuous media correspond only to the average
component, the fluctuation component is neglected. The average com-
ponent is also called the macroscopic field and one refers to the equations
that govern its behavior as the macroscopic Maxwell’s equations. As a
consequence, all the laws derived in electrodynamics of continuous me-
dia, like Snell’s law, Fresnel’s relations and Poynting’s theorem, neglect
the contribution due to the field fluctuations, providing only relations
between the average (macroscopic) values of the electromagnetic and
material fields. Thus the concept of continuity in the macroscopic equa-
tions is somewhat artificial and is the result of an averaging procedure
that smooths out the space-time variations of the fields by neglecting
the field fluctuations. But in ordinary materials the power carried along
by the average component is much greater than the one carried along
by the fluctuations, and this fact is what justifies the successful appli-
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cation of continuous electrodynamics to ordinary materials. As a conse-
quence, one can conclude that the concept of continuity in macroscopic
electrodynamics is a matter of scale based in the actual possibility of
neglecting the contribution of the small fluctuations of the fields caused
by the molecular “granularity” of matter. Nevertheless, this does not
mean that the field fluctuations are undetectable, because if this were
true we would not be able to see, for example, a blue sky.

Now we move to the problem of the optical properties of granular
materials where the characteristic size of the individual grains is not
longer of atomic dimensions but is rather of macroscopic dimensions,
and their optical properties are described by macroscopic electrodynam-
ics. First we will assume that although the characteristic size of the
grains is macroscopic, it is still much smaller than the wavelength of
the incident radiation. In this case the power carried along by the av-
erage component of the electromagnetic field is still large as compared
to the one carried along by the fluctuations; although not as large as
in the case of ordinary materials with “molecular” granularity. If we
now concentrate our attention in the physical description of only the
average component of the fields, we can ask ourselves if it is now pos-
sible to extend the concept of the continuity of matter and to define a
continuous medium in which the average component of the field behaves
exactly in the same manner as in the actual granular material. This ar-
tificial continuous medium is commonly known as effective medium, in
which effective material fields can be defined and whose response to an
applied external field yield, for example, an effective dielectric function
and an effective magnetic susceptibility. From this perspective one could
regard the material fields of ordinary materials in macroscopic electro-
dynamics, also as properties of an artificial effective continuous medium
which describes correctly the behavior that the average field has in the
actual material with “molecular granularity”. The main advantage of
an effective-medium approach is that one can immediately use all the
results of continuous electrodynamics by simply setting, in the relevant
expressions, instead of the macroscopic response functions the effective
response functions, and to certain extent one forgets about the granular-
ity of the material. One has only to be careful about certain aspects of
the physical interpretation of the results. For example, in macroscopic
electrodynamics one interprets the imaginary part of the response func-
tions as a quantity that is proportional to the absorption of energy by
the system, in the case of an effective medium of a granular material,
the imaginary part of the effective response functions is proportional not
only to the energy that is absorbed but also to energy that is scattered.
In this way, the energy balance forces one to look at the energy flux
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carried by the fluctuations, as an energy flux that is “taken away” from
the flux carried by the average component of the field.

The problem is now to find a relationship between the effective re-
sponse functions and the actual geometric and optical parameters of the
grains and the matrix, as well as the statistical parameters that describe
the way in which grains are mixed into the matrix. This is the prob-
lem that has attracted the attention of many researchers for more than
a century, and has required the efforts of theoretical and experimental
physicists as well as applied mathematicians and engineers [2]. Besides
its interest as a problem in basic physics, its solution can be used in
a wide variety of applications. First, because its range of application
extends beyond the field of optical properties and comprises all physical
properties involving & linear response to an external field, like in the
elastic, electric, thermal, or hydrodynamic properties of either granular
composites, rocks, emulsions, suspensions or colloids. The interest lies
then in the calculation, in this type of systems, of properties like: the ef-
fective stress-strain tensor, the effective electrical conductivity, the effec-
tive thermal conductivity, the effective chirality or the effective viscosity.
Second, because the knowledge of the relationship between the effective
response properties and the parameters that characterize a granular sys-
tem, opens the possibility for the construction and design of novel type of
materials fulfilling requirements and specifications that cannot be found
in ordinary materials. Although there has been a significant progress in
the solution of this problem and new type of materials with unexpected
properties have been produced and designed, we are still far from claim-
ing that the problem has been finally solved. There is a wide collection of
expressions, called “mixing rules”, that propose explicit expressions that
relate the parameters characterizing a granular system and its effective
response, nevertheless their range and conditions of validity as well as
the microstructure that is assumed for their derivations, are issues that
very often are not clear. Also, the experimental characterization of the
microstructure of a granular system is not an easy task, and one usually
ends up with only a few from the total set of relevant parameters.

Finally, we address essentially the same problem of extending the idea
of a continuous effective medium for the description of the optical prop-
erties of a granular system, but now when the characteristic size of the
grains is of the same order of magnitude as the wavelength of the inci-
dent radiation. In this case the power carried along by the fluctuations
of the field might be as large as the one carried along by the average
component, and the average field is now called the coherent field, while
the field fluctuations are called the diffuse field. Nevertheless, one can
still ask oneself if in this case the behavior of the average component of
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the field can still be described by a continuous effective medium. There
are several contributions towards the solution of this more complicated
problem in which the scattering processes play a more important role.
One finds in the literature explicit expressions that relate, for example,
the effective index of refraction of a dilute system of randomly located
identical spheres with the forward scattering amplitude of an individual
sphere. Probably, the most popular derivation of this relation is the one
given by van de Hulst in his book [3]. There have been also efforts to
generalize this relation to systems with a larger concentration of spheres
[4] or to different geometries, like a spherical matrix with spherical in-
clusions [5].

However, there are critical remarks about the use of the effective index
of refraction derived by van de Hulst in expressions like the Fresnel's re-
lations that yield the reflection and transmission amplitudes from a slab
in terms of the index of refraction and the optical coefficients of the
material. For example, C. Bohren has considered the simple case of a
plane wave at normal incidence into a slab containing a dilute concentra-
tion of randomly located identical polarizable spherical inclusions, and
he has calculated the coherent component of the reflected and trans-
mitted fields [6]. He finds that in order to calculate the amplitudes of
these fields by replacing the slab by a continuous medium with an ef-
fective index of refraction and Fresnel’s relations, it would be necessary
to define two different index of refraction: one for reflection and one for
transmission. But instead of doing that he proposes to choose another
two different optical coefficients: an effective electric permittivity and
an effective magnetic permeability. This last one is proportional to the
difference between the forward and backward scattering amplitude of an
individual sphere. The problem is to justify how come a composite made
of two nonmagnetic components turns out to be magnetic. The main
objective of this paper is to clarify this issue as well as to extend the cal-
culation to non-normal incidence. We do this by using scattering-wave
and Mie theories to calculate the reflected and transmitted fields from
a thin slab with containing a dilute concentration of randomly located
identical polarizable spheres, and then we identify the current distribu-
tions that may act as sources of these fields. We find that these sources
should be given by a superposition of open and closed currents induced
in the spheres. The closed currents are induced by the time variations
of the magnetic field, and in this sense they represent a true bona fide
magnetic response of the system. We find that both the effective electri-
cal permittivity and the effective magnetic permeability depend on the
angle of incidence and the polarization of the incident field. Therefore
they cannot be regarded as intrinsic properties of the granular system,
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nevertheless they provide the basis for the calculation of the reflected
and transmitted fields. Also, their product being proportional to the
square of the effective index of refraction turns out to be independent of
the angle of incidence and the polarization of the incident beam, and its
expression in terms of the scattering properties of the individual spheres
coincides with the one derived by van de Hulst.

One might call this type of magnetic response in a granular system:
Amperian magnetism, because in the beginning of electrodynamics, A.
M. Ampere had envisioned the physical origin of magnetism as the re-
sult of closed currents induced in the molecules by the time variations
of the magnetic field. Later on it was found that magnetism was a more
complicated phenomenon related more to the spin of the electrons than
to the induction of closed currents in the molecules. But in a system
like a granular composite one has small macroscopic spheres instead of
molecules and the induction of closed currents is more favorable in large
spheres than in small spheres. In a more technical language, the contri-
bution of the spheres to the effective magnetic permeability turns out to
be proportional to the asymmetry in the scattering amplitude between
the forward and the specular direction in the individual spheres, and
from Mie theory one sees that this asymmetry increases with the size of
the spheres. In the limit of very small spheres the scattering becomes
quite isotropic thus the contribution of the spheres to the effective per-
meability vanishes, and one recovers the non-magnetic character of the
effective medium.

A more transparent example of Amperian magnetism is perhaps the
recently developed microstructured materials that operate in the mi-
crowave region. A particular type of these materials consists of an in-
sulating matrix in which a collection of millimeter-size copper rings are
embedded within forming a 3D periodic structure {7]. A time-varying
magnetic field induces currents in the rings giving rise to closed currents
that are responsible for the magnetic character of the response. This
is a beautiful example of Amperian magnetism and shows how a com-
posite of two non-magnetic materials becomes magnetic. By opening
the rings with a small gap, there is also an induced capacitance, which
together with the inductance due to the induced currents in the rings,
gives rise to a resonance phenomenon, and this yields frequency regions
in which the effective magnetic permeability becomes negative. Another
interesting microstructured material is an insulating matrix in which a
collection of very thin long wires are embedded within the matrix form-
ing a well-defined cubic structure. It can be shown that this type of
microstructured materials posses an effective dielectric response that is
negative for certain frequencies. By combining the wire and the ring
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structures it has been shown that there are frequency regions in which
both the effective electric permittivity and the magnetic permeability
are negative yielding a negative effective index of refraction. It has been
also argued that in the frequency regions in which the index of refraction
is negative, one could use this uncommon property for the construction
of a perfect lens.

Finally, we believe that the expressions derived in this paper, al-
though limited to dilute systems, are not a pure and simple curiosity,
but on the contrary they may be useful in several applications. For ex-
ample, there is now interest to follow, in real time, different processes
that take place in turbid media, through the changes in their effective
index of refraction. Nevertheless, although measurements of the atten-
uation of light through turbid systems are done routinely in many lab-
oratories, there are few transmission experiments which measure both,
the real and imaginary part of their effective index of refraction 8], (9]
A simple and potentially very useful way of measuring the effective in-
dex of refraction in turbid media is by critical-angle refractometers [10],
[11], [12]. In this method the real and imaginary parts of the effective
index of refraction are obtained by inverting the relationship between
the reflection amplitude and the effective index of refraction. The naive
use of Fresnel expressions to perform this inversion would lead to errors
in both, accuracy and interpretation. In this respect, the expressions
for the reflection amplitude derived here could be used, together with
data of critical-angle refractometers, to obtain not only more accurate
results of the optical constants of turbid media, but also to start doing
reliable modelling of the correlation between their changes and some of
the specific processes that take place within the system.

2. BASIC CONCEPTS

First we review some basic concepts of linear response in ordinary
materials. If the response is linear the polarization P and the magne-
tization M are proportional to the incident field. The relation between
P and M and the incident electromagnetic field is given, in general,
in terms of integral operators with kernels that are non-local in space
and time. However, for the case homogeneous and isotropic ordinary
materials one can write P = ¢gx®E and M = xHH, where xE and x
are scalar algebraic functions. The functions xE and x* are called the
electric and magnetic susceptibilities, respectively, and they are intrinsic
properties of the material. The non-locality in space is avoided by re-
lating P and M not to the incident fields but rather to the total fields E
and H, which are given by the sum of the incident plus the (average) in-
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duced field. The non-locality in time is accounted for by expressing the
susceptibilities in the Fourier space of frequencies. Thus for an isotropic
and homogeneous material in the presence of an applied field oscillating
with frequency w, the susceptibilities xE and x¥ are only functions of
w. The propagation wavevector k of the field within the material is given
by k = (w/c)n , where c is the speed of light and n = VEp is the index
of refraction. Here ¢ = 1+xF and i = 1+ xH. The reflection amplitude
r is defined as r = E,/E; where is the amplitude of the reflected electric
field while E; is the amplitude of the incident electric field. For the case
of reflection from a half space the Fresnel’s relations are

TE ﬂk; "‘ kz
= —— 1
and -
6 i z
T™ _ 2 (2)

T = —_—
hs T ki 4k,

where k, = kv/n? —sin?6;, n is the index of refraction of the ma-
terial, and the superscripts TE and TM denotes transverse—electric
and transverse-magnetic polarization, respectively, referring to the cases
where the electric or the magnetic field are perpendicular to the plane
of incidence.

As mentioned above, in electrodynamics of continuous media the set
of Maxwell’s equations describe the behavior of only the average com-
ponent of the electromagnetic field. Moreover, when one tries to extend
the idea of continuity to the case of granular composites through the
concept of effective medium, one has to properly define the average of
the fields. The average procedure smooths out the field variations to a
given specified scale. From the experimental point of view this process
can be thought as performed by the measuring apparatus when trying
to detect highly varying fields. From a mathematical point of view the
averaging procedure can be represented by a projection operator acting
on the highly varying microscopic field. There are many ways of tak-
ing the average of the microscopic field, there is, for example, a spatial
average in which a spatial integration of the field times a weight func-
tion is performed around any given point in space, there is truncation
in Fourier space in which the spatial Fourier transform is truncated up
to a maximum cut off wavevector and then is transformed back into
real space. In this work we are dealing with a system with randomly
located inclusions and we will consider a configurational average, that
is, the field at a certain point in space is averaged by “moving around”
the location of the spheres. This “moving around” in a system of ran-
domly located spheres generates a finite set of different configurations
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characterized by a different location of the spheres. The average value
is obtained by adding up the values of the field at any given point in
space generated by each configuration and then dividing it by the total
number of configurations. One should take a sufficiently large number
of configurations in order to obtain a stable value for the average. A
critical analysis on the dependence of the results on the type of average
that is taken is out of the scope of this work, but interested readers can
take a look at Ref. [13].

3. FORMALISM

Qur approach to the effective medium theory consists of comparing
the average scattered fields from a thin slab of the random system of
spheres to the radiated fields by an equivalent homogeneous slab when a
plane wave is incident on them. By matching the scattered and radiated
fields the optical coefficients of the effective medium are obtained. In
what follows we briefly describe the main steps in the calculation of the
effective optical coefficients. More details can be found in Ref. [14].

First, we consider a dilute random distribution of spherical particles
in vacuum (no matrix) contained in a boundless slab region parallel to
the XY plane and —d/2 < z < d/2. The system is in the presence of an
incident plane wave with an electric field given by Ei(r,t) = Epexpi(k'-
r —wt) €;, where r and t are the position vector and time, respectively, w
is the radial frequency, €; is a unit vector in the direction of polarization,
k' = kiay + ki@, is the incident wave vector assumed to lie on the YZ
plane, and 3, 3y, and 3, are unit vectors along the Cartesian axes of
coordinates (see Fig. 1). The electric field satisfies € k! = 0, and
|ki| = k, where k = w/c = 2r /) is the wave number in vacuum, A
is the corresponding wavelength and c is the speed of light. The time
dependence exp(—iwt) will be assumed implicit and we use the SI system
of units.

The incident field is scattered by the particles, and we assume that
their number density is low enough so the independent—scattering ap-
proximation is valid. Within this approximation the total scattered field
is given by the sum of the fields scattered by each of the particles in the
slab region. Therefore, the scattered field ES due to a collection of N
spherical particles with their centers located at {ryrg,...,Tp,...,TN} Can
be written as [4],

N —
ES(r) = Z/d?’r’/dzr”—G_o(r,r') T (' —rp v —1p) - Eg(r"), (3)
p=1




156 VOLUME B: STATISTICAL PHYSICS AND BEYOND

<
>

()

Figure 1. A slab of a dilute random-system of spheres. The centers of the particles
are within the planes z = —d/2 and z = d/2.

where Go(r,r') is the dyadic Green’s function in free space, T'(r/,r") is
the transition operator for a sphere [4], and EZ denotes the exciting
field. This is defined as the field that drives the scattering process in
particle p, that is, the incident field plus the field scattered by the rest of
the particles in a region within and around particle p. Thus EE depends
parametrically on the location of the rest N — 1 particles.

Since we are assuming a dilute system of particles and thin slab, the
excn:mg field may be approximated as the incident field to the slab, EE
E‘. By using the plane-wave expansion of the dyadic Green’s functlon
and the momentum representation of the transition operator T(r r'’) of

an isolated sphere: T(p/,p”) and finally averaging the scattered fields
with respect to the position of the particles, one arrives to,

xp(ik* -r) for z > d/2
<Es(’)>slab:{ Eg Exﬁ(Zkr r) f§§§<d/2 ’ (4)

where
ES = Lo, (@T-Kk) T(k', k) -&:d (5)
2 ki
Es I-Xk") = . in ki
ES = 2 ﬁ—-—.—)-T(k',k’)-a,- sin k3 d (6)

2 ki ki
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where k™ = k;5x+k;§y—ki§z is the wave vector in the specular direction,
ki = \/ k2 — (ki)? — (ki)?, and p is the density of particles. In the
averaging procedure we assumed that the positions of the particles are
independent of each other (i.e., we ignored the exclusion volume) and
that the probability to find a particle with its center inside the volume
d3r is uniform and given by d3r/V, where V is the volume of the slab.
Eq. (4) means that the scattered field interferes constructively along two
directions: k! and k", independently of the location of the scatterers, for
this reason these are the only components of the field that survive after
a configurational average.

Equations (5) and (6) can be put in terms of the scattering matrix ele-
ments commonly used in describing light scattering from small particles.
(The scattering matrix is clearly defined in the book by Bohren and Huff-

man [15]) First, one recognizes that (I-k°k%)-T(k?, k) = 47_1?(@, k?),

where F is the far-field scattering dyad, and then express F in terms
of the scattering matrix elements S. When the particles are spherical,
there are only two non—zero matrix elements, S1 and Sz and the following
expression is obtained

kd
s _ o~
k sinkid ~ PP ~ PR
ES = —Eyy p—y k; [—(cos 6;a, + sin 6;8,)(cos 6;ay — sin ;a,)
XSg(ﬂ' — 291;) + axaxsl(ﬂ' — 29,’)] . 6,; ) (8)

where S(0) = S1(8 = 0) = S2(8 = 0) is called the forward scattering
amplitude, v = 3f/2z%, £ = ka is the size parameter, f = N4ra3/3V is
the filling fraction of spheres, m — 26; is the specular direction, and we
recall that ki = kcos6;. Notice that while Ei is directly proportional
to d, ES is proportional to sin kid/ki. Here d is the thickness of the
averaging region where the centers of the spheres are randomly located.
Since we are considering that the slab is thin enough for the independent
scattering approximation to be valid, one can take d small enough and
approximate sin kid /k% ~ d.

Notice also, that in general |E§_| # |E§|, and this is a direct conse-
quence of the forward-backward anisotropy of Mie scattering, that is,
S(0) # Sp(m — 26;) for m = 1,2. We also recall that this anisotropy
is more acute the larger the sphere. For spheres whose radii are very
small with respect to the incident wavelength, this anisotropy almost
disappears and one has |Ef_| ~ |E§| .

Now the idea is to find the effective current distribution that act as a
source of these fields, and identify this effective currents with the aver-
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age current distribution induced in an effective medium. To model this
effective currents within the thin slab, we imagine the simplest possible
geometry: a 2D homogeneous and isotropic sheet with no internal struc-
ture. We locate the sheet at the 2 = 0 plane and consider an incident
plane wave with TE polarization: E(r,t) = Eoexp [i(kiy + ki2)] 8.
The fields radiated by this 2D-sheet of homogeneous material can be
found by assuming some 2D—currents (i.e., surface currents) driven by
the incident field and applying Maxwell ‘s equation in the region about
z = 0.
The radiated fields by the 2D-sheet are found in the form

;[ Elexp(iki-r)a; forz>0 ’
B = { Ez exp(ik” -r)a; forz<0, ' )

where ki and k™ have the same meaning as before. The coefficients E;{
and E’ are found in terms of the effective currents. Then these currents
are assumed proportional to the incident field through some effective
optical coefficients.

If we assume only open currents along the direction of the electric
field, J = joz0(2) exp(ik;y)ﬁz, we get EY_ = —%uoj()zw/ki where po
is the magnetic permeability of vacuum. The resulting radiated field
are similar to the ones radiated by the slab with spherical inclusions.
However, in this case Eiz = E7_, while in the case of the slab one
has a right-left anisotropy, that is Eﬁx # ES_, which comes from the
anisotropy of Mie scattering. Furthermore, the result E{,=E! isa
direct consequence of Faraday’s law V x E = —iwB, that demands the
continuity of EY whenever B; is finite. Here B is the magnetic field of
the incident plane wave. Therefore, if one wants to find a distribution of
induced currents that properly simulate the sources of the fields radiated
by the slab, one is forced to conclude that this is not possible with an
open current distribution. The fulfillment of Faraday’s law requires a
singular value of B, at z = 0, as the only way to obtain a right-left
anisotropy in the wave amplitudes of the radiated electric field. But the
only way to get a singular value of By at z = 0 would be to have a
distribution of closed currents that generate a magnetization M in the
sheet along the y—direction. Only in this manner By /uo = Hy + My can
have a singular contribution. An average of closed currents running along
the x—direction can be written as two surface current densities running
in opposite directions These closed currents should be induced by an
electric field generated by the time variations of the magnetic field along
the y—direction. In a slab with spherical inclusions the closed currents
can be induced at the inclusions. Let us now define the magnetization
field M as J = V x M where J is, in general, the average of the closed
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currents induced in the material. The magnetization in the y—direction
can be written as M = mgy6(2) exp(ik}y)&y, where moy is the surface
magnetization. Now, one can show that the electric field radiated by this
induced magnetization is also given by plane waves, as the ones in Eq.
(9), but with amplitudes B, = + wpo moy, which are discontinuous at
z = 0. This discontinuity obviously arises from the discontinuity of the
closed—current distribution. However, if Hy can induce closed currents
in the sheet, the same should happen with the time variations of H,.
In this case closed currents should be induced in the XY plane with
a corresponding magnetization in the z-direction. Therefore in order
to be consistent we should also consider the field radiated by a source
like M = —moq,8(z) exp(ik}y)8é,. Adding up the contributions to the
amplitude of the radiated field of the three sources, one gets

ki

+ imoy + imoz 2 | - (10)

1 Joz
K

Ei = —HoW | — 5
=72 ki

We now assume that the averages of the induced currents are propor-
tional to the incident field through some effective response functions,
and then try to find out the values for which one recovers the fields
radiated by the thin slab with spherical inclusions. First we define the
polarization field P as J = 0P/0t — —iwP,where J is the average of
the induced current in the material. Then we define the electric suscep-
tibility tensor %" as P —eoX" - E, where is E the average electric field.
In the same manner the magnetic susceptibility tensor ?H is defined as
M = ?H . H,where H is the average H—field. For an object like the
2D sheet we can write 75 = (Xgil,xgll,xgl) and 7? = (X§{||,X§1||,X§IL)»
where the subindexes || and L denote parallel and perpendicular to the
sheet. The response of the 2D sheet is clearly anisotropic in the || and
1 directions, but we are regarding the XY plane isotropic. Now we as-
sume that the system is so dilute that the average induced current and
magnetization distributions are proportional to the incident field, thus
may write

jor = —iweoxgEo (11)
k
Moy = Xg“Ho cosf; = xg”;j—;(;Eo cosb; (12)
: k. .
mo; = X3, Bosind; = xg_LZEo sinf; , (13)

where we have used the relations between E, H and B given by Maxwell’s
equations and we have introduced in Eq. (13) the surface response xg 1
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to the B field instead of the response x4, to the H field. We do this
because in case the magnetization is along the z—direction, the field
H, = B,/po — mo.6(z)exp(ikiy) is singular at z = 0, and it is not
adequate to define a response to a singular field. On the contrary, the
field B, is continuous and can be regarded as the driving field of the
induced magnetization.

Now we compare the amplitudes of the waves radiated by this sheet,
characterized by three effective surface response functions, with the am-
plitudes of the waves radiated by the slab with spherical inclusions. In
order to do this we first imagine that the effective response of the sheet
is actually describing the response of a slab of a finite width d. One
can regard the sheet as the ending shape of a limiting process which
starts with a slab of a finite width. For example, one can define the
surface susceptibility xlsau 8s xg = limao xEd, where xF is the bulk
susceptibility of a homogeneous and isotropic slab. Therefore, we have
to perform, in Egs. (11)-(13), the following replacements: xfg3“ — xEd

and xg" — xHd, where x¥ is the bulk magnetic susceptibility of a ho-

mogeneous and isotropic slab, and x5, — xd/p =~ x"d/uo. In this last
replacement we are taking into account that in the L direction there is a
surface magnetization at the two parallel faces of the slab that produces
a difference between the average B and H field. This does not happen
along the || direction because along this direction the system is bound-
less. Nevertheless, since we are considering here only the dilute limit, in
which the driving field for the induced currents comes solely from the
incident beam, we can take B =~ poH and replace xg L xH d/pe. We
now substitute the replacements in Eqs. (11)—(13) into Eq. (10) and
compare it with Egs. (7) and (8) to yield

B + xH cos? §; + xsin?0; = 2ivS(0) (14)

xF — x" cos?0; + x7sin 6, = 2iySi(m —26;) su];k;d, (15)

If we assume kid < 1, we can approximate sin kid/kid ~ 1. We now
solve Egs. (14) and (15) for xE and x and use the definitions of the
electrical permittivity € = €/eg = 1+ xF and the magnetic permeability
fi=p/po =1+x" to get
(1)

_ _S27(6:)

NeTfE}(ei) = 1+ ; (16)

aE0) = 1+a[25000 - 5Py e’@)], a7
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where S{™(6;) = L [S(0) + Sm(r — 26)] and S (8:) = S(0) — Sm(m ~
26;), and we have added, to € and fi, the superindex TF to denote the
polarization and the subindex eff to emphasize the fact that they de-
scribe an effective response. In the case of TM polarization one performs
an analogous procedure as the one developed above for TE polarization,
and one can show that the corresponding optical coefficients are given

by

s2 ;)
~“TM¢qg. — . - i
€esf (6) L+ e, (18)
ﬁefA}I(Oi) = 141y [25'&_2)(91') -~ S(_2) (6:) tanz(()i)] . (19)

These results can also be readily obtained from the symmetry relations
in Maxwell’s equations.

Note that the effective optical coefficients .55 and fiesy depend on
the angle of incidence and on the polarization, just like in an anisotropic
medium. Also, the expressions for the effective optical coefficients in
Egs. (16)-(19) are linear in v = 3f /2% and they are valid only to
linear order in . This is consistent with the dilute-limit approximation
adopted above, and therefore the validity of all of our results will be
limited by this restriction.

According to continuum electrodynamics the effective index of refrac-
tion negy should be given by

n{rH0:) = VEm @A) 6:) = VT +2075(0), (20)

where we dropped terms of second order in <y since our approximations
are valid up to first order in  only. This result is the same as the one
derived by Foldy [16] long time ago We may expand the square root
and to lowest order in v we get ness &~ 1+ iyS(0) which is isotropic
and independent of polarization, and is actually the same result as the
one proposed by van de Hulst {3]. So we can see that although the
optical coefficients €y and fi.ss are highly anisotropic and polarization
dependent, their dependence in the angle of incidence is such that the
square root of their product is not.

Let us now look at some limiting cases. First we notice that for
small particles (z < 1) the Mie forward-backward anisotropy in the
angular distribution of scattered radiation becomes S1(0;) = —iz38 and
S2(6;) = —iz3B cosb;, where 8 = (€s —1) /(s +2) and & = €g/ep is
the electrical permittivity of the spheres. Then SSLI )~ —iz3B, S
0, 53_2) ~ —iz3Bsin?6;, and S® ~ —2ix38cos?6;. Substituting these
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values into Eqgs. (16)-(19) we get

BIE0:) = Biff(0:) = fess =1 (21)
FEO:) = &N6:) =épp=1+430f, (22)

and these are the well-known results for the case of small particles, or
for the case of an ordinary material, when one regards the material as
a composite made of molecular inclusions in vacuum. Eq. (21) tells us
that the system is non magnetic and Eq. (22) is the low—density limit
of the effective dielectric response in Maxwell-Garnett theory or in the
Clausius—-Mossotti relation, when one interprets § as proportional to the
molecular polarizability. One can also see that the magnetic character of
the system appears only when the spheres are big enough and is related
to the large forward-backward anisotropy in the Mie scattering of large
particles (z ~ 1).
For normal incidence (6; = 0) one gets

fisf(0) = BH(0) = fiegs(0) = 14+47[S(0) = Si(m)]  (23)
ETE0) = EM0) =Eps(0) =1+ [S(O) + Si(m)],  (24)

where we have used Sj(n) = —Sa(r). And these are the results proposed
by C. Bohren [6] when he introduced the idea of a magnetic response
in the optical properties of granular materials made with non-magnetic
components.

At grazing incidence, 6; — /2, we have that Sy, (7—26;) — S(0), thus
Sﬂr'")(o,-) — S5(0) and S(_m)(()i) — 0 and S(_m)((),-) / cos? §; remains finite.
We can see this by expanding S(_m)(ﬂ,-) around 6; = 7/2 and showing that
lim 2S(_'")(O,-) / cos?§; = 25" (0), where the primes indicate derivative

O;—n
with respect to the argument.

If we now accept the description of the optical properties of a granular
material in terms of the effective optical coefficients given by Eqs. (16)-
(19), the reflection amplitudes of a half space Tas will be given by the
Fresnel’s relations of continuum electrodynamics, that is,

~ i ef “TM (0 \].i eff
TE _ “Zfﬁ}(oi)kz ~ k! ™ __ Ceff (0:)k; — k3
hs = ~TE — 77 #nd Thy = o efr (25)

where k&f/ = k\/('n‘fff)2 —sin2@;, and neff =1 +i7S(0). One can see
that these reflection amplitudes look very different from the ones we
would have used by assuming a non-magnetic effective medium with
Eepf =m2;p = (1 +i75(0)]? end fiess = 1. We will denote the reflection
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coefficients calculated by rIE  and M where the subscript n-m stands
for non-magnetic.

Now, it is also possible to derive the coherent reflectance from the scat-
tering approach by considering a semi-infinite pile of slabs with spherical
particles and solving the multiple scattering of waves between slabs. The
result from this approach can be shown to be consistent with Eq. (25)
[14]. Extending the above results to a composite matrix consisting of
spherical inclusions embedded in a homogeneous matrix is not difficult
and is also discussed in Ref. [14].

4. NUMERICAL RESULTS

Now, we illustrate the behavior of the optical coefficients in a few
examples by numerical calculations. We plot the normalized change in
the optical coefficients (real and imaginary parts). By normalized we
mean divided by the fractional volume occupied by the spheres f and
by change in the optical coefficient we mean the difference with respect
to the optical coefficient without the particles (vacuum, in this case). In
all cases we assume that the particles are in vacuum (no matrix) and we
should recall that the expressions used are valid for dilute systems only
(f < 1). The scattering matrix elements S, involved in the formulas for
the optical coefficients were calculated following the recipe given in the
book by Bohren and Hoffman [15].

First, in Fig. 2, we show the effective index of refraction for a system
of non-magnetic lossless glass spheres (n, = 1.50) as a function of the
particle radius divided by the wavelength, and similar plots for lossy

. spheres with increasing imaginary component of the refractive index. As

it can be appreciated, even if the spheres are lossless the effective index of
refraction has an imaginary component. This is entirely due to scattering
losses and has a maximum near a/X ~ 0.5. For curves corresponding
to lossy particles (3(np) # 0) the loss is due to both, absorption in
the particles, and scattering from the particles. Also, note that the
real part of the effective index of refraction can be less than one for
some particle radius. As it may be expected, the imaginary part of the
effective index of refraction reach the highest value for most absorbing
particles. However, also the real part of the effective refractive index
is higher than for the other curves. The reason is that the scattering
efficiency is stronger for these particles, since the contrast of the particles
with respect to vacuum is highest.

In Fig. 3 we plot the real and imaginary part of the normalized change
in the effective optical coeflicients, eeTfI’}, erA}I , quEf, and ueTfAf as a func-
tion of the particle radius divided by the wavelength for a system of
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Figure 2. Plots of the normalized change in the real and imaginary part of the
effective index of refraction for a system of non-magnetic glass spheres (np = 1.50)
in vacuum, and similar plots for particles with different values of the imaginary part
of their index of refraction.
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Figure 3.  Plots of the normalized change in the real and imaginary part of the
optical coefficients as a function of the particle radius a divided by the wavelength J,
for an angle of incidence of 45°. The plots are for a system of non-magnetic dielectric
spheres (n, = 2.00). The subindex in the optical coefficients eff was removed here
for clarity; dot-dot lines are for ¢TE | dash~dot lines for e7™, solid lines for pTE and
dash-dash lines for ™™,
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dielectric spheres with refractive index of n, = 2.0. and for an angle
of incidence of 6; = 45°. As it can be appreciated, these are irregular
oscillatory function of the particle radius. Also, the effective magnetic
permeability reaches values comparable to the effective electric permit-
tivity for particles of radius a/\ ~ 0.25 and larger. In Fig. 3b it can be
seen that the imaginary parts of efﬁ and uf}f- are negative within some
range of particle radius. This, however, is not an inconsistency since the
sums SeZﬁ + qu{f}, and 8‘6;”}’ + %uf}‘f , remain always positive. In
similar plots, but for fixed particle radius and as a function of the angle
of incidence (not shown here) one finds that the change in the optical
coefficients generally increases towards grazing incidence.

Since the appearance of the effective magnetic susceptibility for sys-
tems of non—magnetic particles is apparently due to the induced closed
currents within the particles, it is interesting to compare the magnetic
response of systems of dielectric particles with that of metallic particles.
It turns out that the effective magnetic response for systems of particles
of the same radius is in general similar in magnitude for dielectric and
metallic particles; except when the particle radius is small compared
to the wavelength. For small particles (say, a < 0.1)A) the imaginary
component of the effective magnetic permeability is orders of magnitude
larger for metallic particles than for dielectric ones. Although its value
is small in absolute terms. Also, the change in the real part of pess is
negative for metallic particles and positive for dielectric particles. In
Fig. 4 we plot the real and imaginary parts of the normalized change
in pess for both polarizations as a function of the angle of incidence
for metallic particles (copper, n, = 0.21 +4.05i at A = 0.69 pm) and
dielectric (glass, n, = 1.5) ones, and for particles radius of a/A =0.1.

Finally, with respect to the coherent reflectance, we have found that
this is generally smaller than what would be predicted by a simpler
model which ignores the effective magnetic response. In Fig. 5 we
show the reflectance for TE and TM polarizations as a function of the
angle of incidence for particles with n, = 2.50 and two different radius:
a/X = 0.1 and a/) = 0.5. The fractional volume of the particles is taken
to be f = 0.1. In Fig. 5b the location of the Brewster angle can be
appreciated and it can be seen that the location of the Brewster angle
predicted by the non-magnetic model differs from our result. The curves
for TM polarization and for particles a/A = 0.1 are an exception and
the reflectance predicted by the non-magnetic formula is lower than
the coherent reflectance R. In plots of the TE reflectance for larger
particles (not shown here) one finds zeros in the coherent reflectance,
and these can be interpreted as a Brewster angle, which only exist when
the medium has a magnetic permeability different from that of vacuum.
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Figure 4.  Plots of the normalized change in the (a) real and (b) imaginary part of
the effective magnetic permeability as a function of the angle of incidence for metallic
(copper) and glass particles of radius a = 0.1A. Plots for both polarizations are shown.
The subindex in the optical coefficients eff was removed here for clarity; dot—dot lines
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5. CONCLUSIONS

We have constructed an effective medium theory to describe the coher-
ent reflection of electromagnetic waves from a random system of spheres.
Our results can be regarded as an extension of ideas put forth previously
by C. Bohren. We found that the effective medium must posses an ef-
fective magnetic permeability, even if the particles are non-magnetic,
in order to have a theory consistent with continuum electrodynamics.
The effective magnetic susceptibility becomes comparable to the effec-
tive electric permittivity as the particle radius increases and they attain
their maximum value when the radius is comparable to the wavelength
of the incident radiation. The origin of this magnetic effect appears in
our theory from the identification of induced closed currents as sources
of the fields radiated by the random system of spheres. These closed
currents must be physically present within each sphere and when av-
eraged they must act as the source of an effective magnetization. The
coherent reflectance calculated including the effective magnetic response
differs appreciably from the one calculated without it. The formulas put
forth in this work are valid for a dilute system of spheres and they can
be readily used in applications satisfying this criteria. Extensions of the
present results to a polydispersed system of spheres is straightforward.
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