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A microscopic perturbative theory developed earlier for the electric field near the surface of a metal having a
nonlocal dielectric tensor is extended beyond the Born approximation. Expressions are derived for the reflection
amplitudes of s- and p-polarized light, and they are compared with the results of previous workers by taking
appropriate limits. A new, general dispersion relation of surface plasmons is given which takes into account possible
band-structure effects near the surface. The influence of this more accurate theory on formulas for differential
reflectance from an absorbate-covered metal surface is indicated.

I. INTRODUCTION AND FORMALISM

In a previous paper' (hereafter referred to as
I), we outlined a procedure for obtaining the elec-
tric field near the surface of a metal having a
nonlocal dielectric response function when light of
either s polarization (i.e., electric field perpen-
dicular to the plane of incidence) or p polariza-
tion (i.e., electric field parallel to the plane of
incidence) is incident upon'it. Our approach was
perturbative in nature, and we derived formulas
within the first Born approximation for changes
in the reflection amplitudes of a metal from the
classical Fresnel formulas,? which are caused by
the nonlocality of the dielectric response near
its surface. We also obtained, within the same
approximation, expressions for the differential
reflectance of an absorbate-covered metal, which
are of interest in experiments on surface reflec-
tance spectroscopy (SRS). It has been pointed out
by Sipe® that the first Born approximation neglects
the coupling between the surface region and the
bulk material because it ignores the effects of the
induced field on the response. Starting from a
different standpoint and formalism, he has derived
formulas for the modification of the reflection
amplitude when the coupling between the surface
region and the bulk is taken into account. In this
paper we show how the perturbation theory of I
can be extended beyond the first Born approxi-
mation in order to treat the bulk-surface region
coupling to all orders. We obtain formulas for
the modified reflection amplitudes which, for
s-polarized light, are identical to Sipe’s,® but
for p-polarized light are more general than his
results. Finally, we discuss what consequences
this more accurate theory has for expressions
of differential reflectance from an adsorbate-
covered metal.

Our aim, quite simply, is to solve Eqgs. (4.16),
(4.5), and (4.6) of I for the electric field com-

2

ponents exactly, without making the Born approxi-
mation; the notation of I is used throughout. Be-
ginning with the simpler case of s polarization,
we rewrite Eq. (4.16) of I with the help of the
definition of Eq. (4.17b) as

E(e)=U,() - % By(2) Gyle, 2)Aw). (1)

Physically this equation describes the electric
field (pointing along y) of s-polarized light inci-
dent in the xz plane on a metal surface located at
z=2, Evaluating Eq. (1) at 2=2,, we obtain the
surface electric field as

E},(ZO)= Uy(zo)ls’ (23)
where, on using Egs. (3.10)—(3.14) of I,
w? A
- ¥ Ay
I, 1/(1 i qg+kz> . (2b)

Taking the limit of Eq. (1) far into the vacuum
region (z— — <), we obtain

- 2 9 -
Ey(Z)zr—:w eiazz+ <’rg+i _fT (qu:‘/;z)z Is>e-iazg ’

(3)
where Z=2z -z, and ¥ =(q, - #,)/(q, +h,) is the
Fresnel reflection amplitude of s-polarized light.
The modified reflection amplitude can now be
written in essentially the same form as Eq. (4.24)

of I but with a renormalized A (w), viz.,
re=r3{1+[2iq,/(1 - )] A, (w)} (4a)

and
1~\y(w)=Ay(w)Is

a0 [1-i(Eaw @] . @

The case of p-polarized light, while straight-
forward, is a little more cumbersome. The start-
ing point now is Eqgs. (4.5) and (4.6) of I, which,
with the help of the definitions of Egs. (4.11), may
be written as
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Ex(z) = Ux(z) - ?—;{Ex(zo) Gxx(zy zo) Ax + D‘(zo) [Gxt(’z’ z”) €w(z ”)]z"—>zo (- Az)} b

D,(2)= €,(2)Uy(2) - ?—:{E,(zo) €0(2) Gux(2, 20) A + Dy(20)€,(2)[ G (2, 27)€, (2 ")) s (= AL}

We now evaluate the fields at z=2, and make use
of the limits given in Egs. (4.12) of I. We obtain
the coupled linear equations

E,(2,)(1+ L,) — D,(2,) L,= U(2,), (6a)

E,(2,) ?1% L,+D,(zo)<1 - ?1% L,)= e (20)Us(2,), (6b)

where
w2
L.= = a(l+79)(1 -7 A, , (6¢)
2
L,= S a(1+79)? Q\,4,, (6d)
c q:
and
a=-i(€,q,+k,)/(4€,w?/c?). (6e)
3J
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(5a)

(5b)

-
The solution of the system of linear equations of
Eqs. (6a) and (6b) may be written as

Ex(zo)'_' Ux(zo)lx ’ (78.)
Dy(2,)= €,(2,) Upy(2,) 1, , (7o)
where
(1.8, &2 Un(z) ) /
I, (1 % L+ U.(2)) L, /A, (7e)
) Q@ _Uflz) ) /
A carara ) S
and the determinant A can be simplified to
A=1+L,-(Q/q,)L, . (Te)

We substitute Eqs. (7a) and (7b) in Eq. (5a) and
take the limit 2— - to obtain

79)?

E,(z) ~ eiqzz_e-iq,zrg(l

Z—> =

4¢, 75

where 7= (€,q, — k,)/(€sq. + .) is the Fresnel re-
flection amplitude of p-polarized light. Equation
(8) has the same form as Eq. (4.13) of I, but
with A, and A, replaced by their renormalized
counterparts '

Aw)=L A (w), A w)=TI,A(w). 9)
After simple algebra, the modified reflection
amplitude may be written as [Eq. (4.15) of 1]

. BRA(w)+€2Q%A (w))

r=r°<1—21 , G £ . 10

=2 @ - 6 10

Equations (4) and (10) are our new formulas for
the modified reflection amplitudes of s- and p-
polarized light from a semi-infinite metal where
the coupling of the surface region and the bulk
material is fully taken into account.

IL. RESULTS AND DISCUSSION

We wish to apply our results to various limiting
cases and compare with previous results. It is
convenient, for this purpose, to simplify the ex-
pressions for the renormalized coefficients
Au(w) (L=x,y,2). We note that from Egs. (3.3)—
(3.5) of 1,

€,(2,) U2,)/U(2,)=— €, Q/F,, (11a)

_; (ederk,) (1 +72)(3—

otk Q7 (1+99)
LA, —i etk & (Lergy A) (8)
4

4,  qi

r
while

Ly==iq,k N,/(€q, +k,) (11b)
and )

Ly==16,4, Q\./(€,q,+k,). (11c)

It therefore follows that, on using Egs. (7c¢)-(7e),

I,=(1+i¢, Q2A,/Rk,)/ A, (12a)

L=(1-ikA/6)/ A, (12b)
where

A=1-i(qk, Ay — €, Q%N ,)/ (€4, +k,). (12¢)

Equations (4b) and (9) now give all the A p(w)'s.

In order to make contact with the expressions
derived by Sipe,® it is useful to rewrite his formu-
las [Eqgs. (3.14) and (3.15) of Ref. 3] in our nota-
tion. For the modified reflection amplitude of
s-polarized light, he obtains

7=+ (1 +72)2n,/[1 = n (1 +79)]. (13)
Once we make the identification
oy = (E/2)(?/?)A/q, , (14)

and use the definition of r{, it is easy to show
that Eq. (13) reduces to Eq. (4a) of this paper.
For p-polarized light, we make the identification
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nee=(/2) g, A, , (15a)

Noz = — (E/2)(Q 2/q.) A, . (15b)
In deriving his formula for the modified reflec-
tion amplitude of p-polarized light, Sipe assumes
1y, =0, ie., A, (w)=0. While this is true for semi-
infinite jellium within the random-phase approxi-
mation (RPA) this is no¢ the most general situa-
tion. Sipe’s formula for this special case in our
notation is

V=7 3+ (1 +7 220y /[1 = n (1 +73)]. (16)

Straightforward, if lengthy, algebra can now be
used to reduce Eq. (16) to Eq. (10) of this paper
when A,(w) and hence 1~\x(w) vanish, Our expres-
sion for the modified p-polarized reflection am-
plitude given in Eq. (10) is therefore more general
than Sipe’s, and reduces to his expression in the
special case considered by him.

It is also possible to take appropriate limits of
the expressions for reflection amplitudes derived
in this paper and recover the results for the re-
flection of light from a conducting thin sheet. The
latter problem has been studied by Mochan and
Barrera® in their investigation of optical reflection
from an inversion layer at a metal-oxide-semi-
conductor interface. For an infinitely thin sheet,
there is no background medium, and hence, €,—1
and k,~ g, in such a way that »2 - 0 and

: -k _
lim $220 -3 (w¥/et)/.. L)
€1 b
Equations (4) therefore yield
i (w?/c?) Ay
2 q,-@/2)(w?/cA, °
We note, however, that from Egs. (4.17) of I in
the sheet problem

— pSheet

Vs~ 7 (18)

A(@) — gL de"<ow(Z”)>E éﬂ(@,y)) .
€51 w w
(19a)
Substitution in Eq. (18) and the use of the fact
that ¢,= (w/c)cosé;, 6; being the angle of inci-
dence, now gives the result of Mochan and Bar-
rera,* viz.,

= (21/c) oy, )
cosb; +(2m/c){(o,,)) (19b)

For p-polarized light once again, 3~ 0 as ¢,~ 1
but

,rssheet =

J

lim .'Eblqu_S_ = (wz/cz)/(2q2) -q,
€1 -

=(Q*~-q2)/(2q.). (20)
Equation (10) thus leads to the result that in this
limit,
7y = (=i/2¢,)q2 A () + Q%A (w)], (21a)
where, in the notation of Ref. 4,

Aw)— 22 (6.0
eb"l w 4_15 QZ

1+ © q_«szz >>
X 2,” £ Qz ’ (Zlb)
1+ U(q,((on e L <<szz>>)
Rufw)— = 22 (5.0
€b"’1
1+ 11—5 TR ()]
X 2 ’ (210)
14 2—‘:((1 Ko+ % <<s,,>>)
with
M@ = T (o), M) = - (s,
Eb”l €1
(21d)

Once we introduce the angle of incidence 6;, and
ignore terms of second order in the small quan-
tities representing the response functions of the
sheet, we recover the result of Ref. 4.

We turn next to the question of the dispersion
relation of surface plasmons at the boundary of a
nonlocal medium and vacuum. There is extensive
discussion in the literature®'® about how the sur-
face-plasmon dispersion relation may be obtained
from the reflection amplitude of p-polarized
light, either by setting »,(¢,)—~ = or by analytically
continuing #,(q,) in the complex ¢, plane and
setting 7,(=q,)=0. It is clear from Eq. (10) of
this paper that 7,—~ < when either & (w) or A (w)
blows up. Equations (9) and (12) further indicate
that this situation cannot arise from the poles
of either A (w) or A,(w), but rather from the zero
of A, the location of which can be obtained from
Eq. (12¢) as obeying the equation

equ + kz=i(qz ka Ax - €b QzAz) . (223.)

This equation may be rewritten equivalently as

6(@)(Q7 - 0/c?) 2+ [@ = €,(w)w?/c?] V2= — {€,(0)@%A (@) + (@ = w?/c?)/2[Q — €,(w)w?/c*] V2 ()}, (22D)

where the frequency dependence of various quan-
tities has been displayed explicitly. We now con-
sider several limiting cases.

(i) For a medium without any surface-induced
nonlocality, A, (w)=A,(w)=0. Simple algebra with

I
Eq. (22b) in that case leads to the well-known
dispersion relation®

@ = 65 (w)(W?/c?)/[1+€,(w)] . (23)

(ii) For the semi-infinite jellium model con-
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sidered by Sipe,® A (w)=0 and A (w)=[1 -~

€(w)] A(w)/€,(w), the latter equation being merely
the definition of A(w).® Substitution in Eq. (22b)
leads immediately to Eq. (4.19) of Ref. 3, viz.,

€b((‘,)gQ2_(‘)2/62)1/2_‘i_I:Q2__ €b(w)w2/czl 1/2 ‘
== Q1 - g(w)] A(w) . (24)

(iii) In order to derive the dispersion relation
of Dasgupta and Bagchi,® one multiplies and divides
the left-hand side of Eq. (24) by

Eb(Qz - w2/02)1/2 - (Q2 -6, wz/CZ)l/z

and replaces the denominator by 2€,(Q? — w?/c?)Y?
by assuming the solution to lie close to that for
the local case described by Eq. (23). One obtains

(€-1)Q2 = ¢y, — 1) w?/c?
26,,(Q2 — w2/02)1/2

== Q*1-¢,)A.

(25)

This equation is identical to Eq (11) of Ref 5—a
feature noted earlier by Sipe.?

A physical point may be made about the new
surface-plasmon dispersion relation of Eq. (22b)
wh1ch is perhaps significant. The appearance of

A,(w) in Eq. (22b) means that the dispersion rela-
tion will depend on the transverse response of
the surface region to electric fields parallel to
the surface. For the jellium model within the
RPA, A,(w) vanishes, but it will be finite for a
real system when band-structure effects due to
the lattice are taken into consideration. A lattice
structure, of course, will have an effect on A, (w)
as well. In any event, both band-structure effects
and the loss of translational symmetry normal to
the surface are expected to affect the surface
plasmon dispersion relation.

Finally we wish to consider expressions for the
differential reflectance of light from an absorbate-
covered metal within our present, more exact
theory. Let us denote by »9 (@) and $ (» P
the reflection amplitudes of s- and p-polarized
light respectively for the clean (adsorbate-
covered) metal. These amplitudes are given, of
course, by Egs. (4a) and (10) with A p(w) replaced
by AQ(w) [A$(w)] where p=x,y,2. Then a simple
calculation shows that, to linear order in the
Ay’s,

AR\ _ lr@)2_ |2 oA, (w
(__z) = __L'_ol_z’i—=4431m( s ( )>’
a

R, |72 €(w)—~1
(26)
and
ARy _ lr @12 - lr§)2
(R,, )a— 17312
B20A (w) + €2Q20A (w))
= 4¢, Im( =% P —s 27
aim(SOEETAY) L e
where
Gﬁu(w)=1§ﬁ”(w)—/~\}f’(w), L=x,9,2 . (28)

Equations (26) and (27) are formally similar to
Egs. (5.7) and (5.5) of I, the only difference being
that, unlike the case in I, 0A,(w) can no longer

be written simply as integrals over differences of
dielectric response functions of the clean and the
absorbate-covered metal surfaces. They may still
be regarded, though, as parameters in terms of
which the experimental SRS data ought to be inter-
preted.

In conclusion, we have derived in this paper .
expressions for the reflection amplitudes of s-
and p-polarized light from a semi-infinite me-
dium having a surface-induced nonlocality in the
dielectric response tensor. We start from a
microscopic theory’ and only assume that the
wavelength of light is large compared to the
range of nonlocality of the response functions, but
do not make any further approximations. The re-
sult for s- polarized light is the same as Sipe’s,?
while that for p-polarized light is more general.
Using the latter we have derived a new, very
general, dispersion relation for surface plasmons.
We have also indicated how the effects of adsorp-
tion may be included in writing formulas for the
differential reflectance of light.
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