Statistical interpretation of the local field inside dielectrics
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We analyze and compare several derivations of the Clausius—-Mossotti relation that appear in
many textbooks. We then present a statistical-mechanical calculation of the local field for a
classical system of harmonic oscillators interacting via the Coulomb potential. We derive the
Clausius-Mossotti relation in order to analyze consistently the nature of the approximations used

and their range of applicability.

I. INTRODUCTION

The derivation of the Clausius-Mossotti relation
through the concept of the local or the molecular field has
been discussed in many textbooks (see, for example, Refs.
1-7). The molecular field E , is defined as the average field
at the site of a given molecule produced by the rest of the
molecules in the system. The type of average that should be
taken in each case has been very much discussed.*'? For
example, in Refs. 1-3, the molecular field is obtained by
treating the molecules contained within a small sphere cen-
tered at the given molecule, separately from those lying
outside the sphere, the latter being treated in the contin-
uum approximation. The average contribution E . of the
molecules within the small sphere vanishes when they are
distributed at random or when they form a cubic lattice.
The molecules outside the sphere give rise to two contribu-
tions: the polarization volume charge density — V-P and
the polarization surface charge density P+# around the
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sphere; here P is the average dipole moment per unit vol-
ume and 7 is a unit vector perpendicular to the surface of
the sphere and directed inwards. Since the contribution of
the volume charge density to the molecular field E , is al-
most the same as its contribution to the macroscopic field E

* (the latter includes the contribution of — V-P from the vol-

ume of the sphere, which is very small), the difference be-
tween the two arises only from the contribution 47P/3 of
the polarization surface charge density. The result is then
E,, = E + 47P/3. In this analysis, the fact that one is cal-
culating the field on a given molecule appears explicitly
only in the case of the cubic lattice, where one is consider-
ing those molecules that lie on the various lattice sites that
are different from the one occupied by the given molecule.
But in the case of a random distribution, it is not stated
explicitly where the assumption is made that one is sitting
on a molecule. However, if we examine the calculation of
E...., it appears that no molecule is ever allowed to pass by
the observation point: this is precisely what would happen
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if we were on a molecule, and the probability for any other
one to approach the one given were vanishingly small {van-
ishing correlation function at zero distance). It is probably
at this point where the assumption is made.

Therefore, the same derivation could not be applied to
the calculation of the macroscopic field E, considered as
the average field at an arbitrary point in space produced by
all the other molecules, since, in this case, the probability
that any molecule will approach that given point 1s finite;
the contribution to-E of the nearby molecules is analyzed
more carefully in Ref. 4, where it is shown to be given pre-
cisely by — 47P/3, which then exactly cancels the surface
contribution 47P/3 that was mentioned above.

In Ref. 4 the averaging process of the fields is done some-
what differently. It is stated that in order to calculate the
field E,, on a given molecule, one cannot regard the mole-
cules close to the one in question within the continuum
approximation, but rather as a discrete distribution. There-
fore E,, = E + E,.,, — Ep, where E_,, is the actual con-
tribution of the molecules contained in a sphere centered at
the given molecule and Ej, is the average contribution from
these same molecules treated in the continuum approxima-
tion and given in terms of the polarization field P. Here E is
considered, apparently, as an average of the microscopic
field e over a small sphere. Then e has contributions com-
ing from charges outside the sphere and from those inside:
e=e,, +e¢,. While the average of e, over the sphere
contributes equally to E and to E,,, the contribution of ¢;,
is not same. Its contribution to E is Ep = — 47 P/3,
whereas its contribution to E,, is the E__,, discussed above
and calculated from a discrete distribution as in Refs. 1-3.
Again, it seems that a vanishing correlation function at
zero distance is assumed tacitly in the calculation.

The analysis of Ref. 5 is much less sophisticated than the
ones of the previous references. The field at any given point
inside a dielectric is considered as the sum of the field due to
a spherical plug centered at the given point plus the field
inside a spherical cavity that surrounds the plug. The latter
is assumed to resemble the field felt by an individual
molecule.

The treatment of Refs. 6 and 7 uses explicitly the fact
that the dipole moment induced in atom 4 is determined by
the field arising from all other sources but atom A. This
field is not the same as the macroscopic field E in the neigh-
borhood of atom A since E includes the contribution from
the charges of atom A itself (this same statement can be
found in Ref. 3, but as we discussed above, it is not clear at
which point in the derivation is taken into account explicit-
ly). Since the explicit calculation of the spatial average of
the self-field gives — 47P/3, the usual result is readily
obtained.

Besides lacking a well-established methodology in order
to deal with the averaging process, all the treatments men-
tioned above are static in nature since the dynamical prop-
erties of the system never appear and their result can hardly
be considered a thermodynamical one.

The purpose of the present paper is to present a statisti-
cal-mechanical treatment of the macroscopic field E and
the molecular field E,, in which the physical origin of their
difference is clearly seen through a unified averaging pro-
cess. We introduce, within a simple dynamical model, a
true statistical-mechanical analysis of the problem, which
is more rigorous than the usual derivations.

In Sec. II we introduce the model Hamiltonian of the
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system and derive the expression for the molecular field
E,,, which is then compared with the corresponding ex-
pression for the macroscopic field E. In Sec. ITI we derive
the Clausius—Mossotti relation for a system of hard spheres
and then we show its more general validity. We also ana-
lyze its range of applicability by considering the nature of
the approximations used.

I1. CALCULATION OF THE MOLECULAR FIELD

Our model consists of a system of NV atoms represented
by a massive positive nucleus interacting with an electron
through a harmonic oscillator force and interacting among
themselves through the Coulomb potential. In order to
study its response, the system is placed in an external elec-
trostatic potential 4., . The usual justification behind such
a simplified atomic model relies in the fact that the quan-
tum-mechanical linear response of an atom to an electro-
magnetic field can be written in a form that corresponds to
the one of a set of classical oscillators with different “oscil-
lator strengths.”'* For simplicity we shall assume only one
oscillator (with natural frequency @,) per atom, so that our
model will be represented by the following Hamiltonian:

H= ﬁv:”,z/ZM‘{"' iﬂ,z/zm'{"si ﬁ:mw(z)hia '_lziai2

i=1 i=1 i=la=1

N
+ Sulif) + e [Sexe(R) — bexelri)]s (2.1)
i<j i=1

where R,,I1;, and M are the position, momentum, and
mass of the ith nucleus and r;,7r;, and m are the correspond-
ing quantities for the ith electron; NV is the total number of
atoms; the index a represents the three Cartesian compo-
nents, e is the absolute value of the electronic charge, and
v(ij) is the Coulomb interaction energy between atoms {
andj given by

i) = == ’

IR, _Rj| B Ir;

(2.2)

_ 1 + 1 )
lRi_rjI }ri—rjl
The thermodynamical properties of the system appear
through the polarization field, defined as

P(R) = (¢ 5 (R, — 18R —R,)),

i=1
where § is the Dirac delta function and () stands for a
thermodynamical average, i.e.,

4)= JA exp (—BH )dl/f exp(—pBH)dI, 2.4)

where

Al = d L, =d *Tlyd *7,+d *myd *Ryed Ryd *rovd 'ty

(2.3)

is the volume element in phase space; 8 = (k5 T) ™', where
k is the Boltzmann constant and T the absolute tempera-
ture. The polarization field P(R) as given by Eq. (2.3) is the
thermal average of the dipole moments corresponding to
the atomic charge distributions and we have chosen the
“position of the ith dipole” at R,. The dependence of the
result on this choice is expected to be weak, if the extension
of the atoms is small compared with the mean interatomic

distance.
We now calculate the polarization field using Eq. (2.3).
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We seek an expression for R; — r;. Differentiating both
sides of Eq. (2.1) with respect to r,, we have

OH _ pd(ry — Ri)

aria
+ e[emol.a(ri) +Eexl.a(ri)]’ (25)
where E,,, = — V4,,, is the external electrostatic field and
mola(r ) - zemola(r
A#d

1 1 )
_ 2.6)
3".-:.1(;)( Ir, — R, 5l

is the field felt by the ith electron placed at r;, produced by
all the other atoms. If we multiply Eq. (2.5) by § (R — R,)
and average, the left-hand side gives zero. Indeed, for R,
fixed, let us integrate over r,, first:

Ir; —

_‘_9_}£.e _ﬁHd’-, = - — ée_-fidr.
a",-a ia ﬁ 5r ia
= [e”””]: i (2.7)

Since the atoms are bound by a harmonic oscillator, if we
take r;, far away with R; fixed, H— + « and the above
term vanishes. Substituting the first term on the right-hand
side of Eq. (2.5) in Eq. {2.3) we then have

P(R) = a(Z[Eext (ri) + emol (rl)]a(R - Ri)): (288.)
where
a=e’/muw}. (2.8b)

This equation proves that the polarization is proportional
to the average field felt by each atom due to the other atoms
and the external sources. That is,

P(R) =aNp(RE, (R, =R), (2:9) .
where
E, (R, =R} = [1/p(R}] ([Eey (r)) + €ma(r:)]6 (R — Ry))
(2.10)

is the molecular field and p(R) is the probability of finding a
nucleus at R,. In Eq. (2.10) we have made use of the fact
that the Hamiltonian is invariant under a relabeling of the
atoms.

Now, if the total field

Eext(rl) + emol(rl) (211)

Erfr)=
on an electron does not vary appreciably within a length
u, = |r, — R,| of atomic dimensions, that is,

|V[Er(r,)}u,JI/[Er(r))] < 1, (2.12)
then E(r,)=~E(R,) and no net force is felt on an atom.
This means that gradients in the density will not arise and
the thermal averages can be thus taken in the absence of the
external field and will be denoted by (=),

Therefore Eq. (2.10) for the molecular field can be writ-
ten as

E,.(R)=E,(R)+ [1/p(R}] (e, (R;) 6 R —Ry)),
(2.13)

or
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m(R) - cx((R)
= [1/p(R)] 2 (€91 (R)5 (R —R,)), (2.14)
= [(N — 1)/P R)] (elLi(R)S (R —Ry)),, (2.15)

where we have used the fact that each term in Eq. (2.14)
contributes equally to the sum. Since u,=r; — R, is always
of the order of atomic dimensions, we can make a multipole
expansion of the field and, to lowest order in u; we obtain

el (Ri)ze Ty, [uy Vi, (1/|R, — Ry])]

=e T(Rl — R,)(r; — R,), (2.16)
where we have defined
TR, — R,)=Vy Vg, (1/IR;, — R,|). (2.17)

We now substitute Eq. (2.16) into Eq. (2.15) and integrate
over r, and over atoms 3,..., N yielding

(Rl) ext

w i fm

xa R — R,)o(R,,R,,r,Jd *R, d°R, d°r,

TR — R,){r, — R
e JELER SRR Y
Xp(R; = R,R,,1,)d *R, d °r,, (2.18)

where p(R,,R,,r,) is the joint probability of finding an elec-
tron at r, and nuclei at R, and R,. We can write this joint
probability

PRLR,r)=p(R{|R,,r,0(R,,r,) (2.19)
in terms of the conditional probability p(R,|R,r,) that nu-
cleus 1 be at R,, with the condition that atom 2 be at R,,r,.

The problem simplifies greatly if we assume that the po-

sition of nucleus 1 is not very sensitive to the position of the
electron in atom 2, so that

P(RLRy,1)=p(R||R,) p(Ry,ry). (2.20)

With this approximation, Eq. (2.18) can be written finally
as

— Ry}, — Ry

E,(R) - m (R)
=e d’R, T(R — R,)p(R|R,)
'J’d 31'2("2 - R, Jo(R,,1,)

N-—1

f‘ﬁk ~ RyP(Ryc(R, Ryd°R,,  (221)

where we have introduced the two-particle correlation
function

¢(R;, R;)=p(R,|R,)/p(R,), (2.22)
and using Eq. (2.3) we have identified
PR, = — NeJ-d ’ry(ry — RyJo(Ry,r5). {2.23)

We notice that the peculiarity of the expressions for the
molecular field is that the R that appears in Eq. (2.18) and
all subsequent equations always indicate the position of a
particle. This fact appears explicitly through the two-parti-
cle correlation function in Eq. (2.21).

On the other hand, if we were considering the macro-
scopic field E(R), the argument R would simply denote an
arbitrary observation point within the medium. In this case
Eq. (2.15) should be replaced by
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ERR) — Eoy(RI= 3 (e (R)) = N (e, (R)),

ji=1
where e (R) is the field at R produced by atom 1 and can
be approximated [as in Eq. (2.16)] by

el(Rj=e TR — R }(r, = R,).
Substituting Eq. (2.25) into Eq. (2.24) we obtain
E(R) - Eexl(R}

= Ne”'f(k —RMr, — R,p(R,,r Jd’R,d %, (2.26a)

(2.24)

(2.25)

= —f“f(R —R,)}P(R,}d°R, (2.26b)
= _vRJ :—EE%;(-?&R,. (2.26¢)

Thus the essential difference between Eqs. (2.26b) and
(2.21} is the appearance of the two-particle correlation
function in the latter. Equation (2.26¢) is the familiar ex-
pression for the macroscopic field that appears in most
textbooks and is obtained from Eq. (2.26b) by using the
definition of T(R — R,) (Eq. 2.17) and an integration by
parts.

III. CLAUSIUS-MOSSOTTI RELATION

In Sec. II we derived Eq. (2.21), which provides a rela-
tionship between the molecular field and the polarization
field, once the correlation function ¢(R,R,) is given.

In order to obtain a simple analytical relation we shall
analyze, in this section, a very simple model for ¢(R;,R;), by
assuming that the atoms can be treated as hard spheres; the
correlation function is taken then as

0 R<«a

R Ry = {1 R>a, (3.1)
where R = |R, — R,| and a/2 is the radius of the spheres.
Then we have that the molecular field is given by Eq. (2.21),
where the integral of T-P is taken over all space, with a
small sphere around R, = R excluded; that is

E,R)=E Ri- [ TR-RPRIR, (32
2 — sphere

where we have also taken the large-N limit. Using the defi-
nition of T(R — R,) [Eq. (2.17)], we have

E,.(R)=E.(R)
— f Ve (Ve, I/IR —R,|)PRy)d ’R,
x - sphere
’ (3.3)
VR,'P(Rz) 3
=E..(R) + Ve ———d°R,
w0 — sphere ‘R - Rgl
P(R;) ) 3

— |V (V o ——2 _)d°R,. 34
[¥u(Te Roa )R (3.4

In the second term on the right-hand side in Eq. (3.4) the
integrand goes as |R — R,| ™7 near R, = R; this factor is
compensated by the quadratic radial dependence of the
volume differential, thus giving a finite contribution when
integrated over a small sphere around R, = R. This contri-
bution is proportional to the volume of the sphere, which
we have taken of atomic dimensions; the integral can thus
be extended over all space and Vg taken outside the inte-
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gral. Therefore the first two terms on the right-hand side in
Eq. (3.4) correspond to the macroscopic field E [see Eq.
(2.26¢)]. :

On the other hand, when we evaluate the last integral o
the right-hand side of Eq. (3.4), the exclusion of a small
sphere around R, = R is essential, because the integrand
goes as |[R — R,| ™. We thus have

P(R,) ) >
— Vel Vg + ——Jd°R
J;:—where R( R |R—R2| 2

§ v P(R,)d S,
= R —————
R-R;[=a lR—Rll

= — ———=P(R °d57, 3.5
ﬁl_&:a R_R,[ (Ry)d S, (3.5)

where the volume integral was written, after an integration
by parts, as an integral over the surface of the sphere of
radius a. The contribution from the surface at infinity van-
ishes and d S, points outward from the sphere.

We now assume that P(R) varies slowly in a length of the
order of atomic dimensions, so that it can be taken out of
the integral. Taking the z axis in the direction of P, it can be
seen that the last integral in Eq. (3.5) has only a z compo-
nent, which can be written as

PJ 2 cos 0P d2 = Pf cos? 0d = i’;—’i, (3.6)
r

where r=|R, — R| and d{2 is the solid angle differential.
Notice that this integral is independent of the radius of the
sphere. Substituting Eq. (3.6) into Eq. (3.4), and using Eq.
(2.26¢) along with the arguments mentioned above, we can
write finally

E..(R) = ER) + (47/3) P(R). (3.7a)

The term (47/3) P is known in the literature as the Lo-
rentz correction to the molecular field; here we have de-
rived relation (3.7a) as a particular case of the general ex-
pression, Eq. (2.21), when we assume a hard-sphere model

for the pair-correlation function. From Eq. (3.7a) one can
obtain'~’ the well-known Clausius—Mossotti relation
3 e—1
a=
47Np € + 2
between the microscopic polarizability a and the dielectric
constant €.

. Nevertheless we shall now show that the Clausius—Mos-
sotti relation has a more general validity than the one im-
plied by the derivation given above.

Multiplying both sides of Eq. (2.21) by Nap(R), and using
Eq. (2.9), we obtain

(3.7b)

P(R) = Nap(R)(E...[R

- f?(R — Ry)'P(R;)c(R,R,)d 3Rz), (3-8)

an integral equation for the polarization field. Here we
have taken the large-V limit.

Since the thermal averages can be approximated by
averages in the absence of the external field, then
¢(R,, R,) = ¢(|R, — R,|) and Np(R) = n,; thus we can solve
Eq. (3.8) by taking its Fourier transform'*

Pk) = nya[ & (k) — Q)2 (K)], (3.9)

where the Fourier transform is defined as
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3
PR) = f.@(k)e""“ d—-‘% (3.10)
(2m)
and
Qk)= f T(R)c(R)e*”d °R. (3.11)
In the case of an external electrostatic field, VX E.. = 0;

ext

thus E,,, has no transverse component and consequently
2 (k) is purely longitudinal. Therefore without loss of gen-
erality we take k along the z axis and write
1

1+ na@,. (k)

Using the explicit form of T(R) given in Eq. (2.17) we are
able to calculate Q,, (k) through simple integration and we
find

P k) = nga & ez (k). (3- 12)

0,.(k) = SWI: J'—g‘;’ﬂ ‘%’i)dx, ' (3.13)

where j,(kx) is the spherical Bessel function of order 1.
Since ¢{x) is normalized to unity at infinity, there is al-
ways a length a (usually of atomic dimensions) such that

cla)=1, (3.14)
detx))
( e )x=a~0. (3.15)

Thus we can replace the upper limit in the integral in Eq.
(3.13) by a. Furthermore, if the external field does not vary
appreciably within such a length a, then we need to consid-
er only those Fourier components of the field with ka < 1.
Using the limit

gt 019

and the fact that ¢(x) vanishes at the origin, we can approxi-
mate the integral in Eq. (3.13) by

8r (° 87
0.k 2T f detx) = 2., (3.17)

a result that is independent of the functional form of c(x).

Substituting Eq. (3.17) into Eq. (3.12) and performing an
inverse Fourier transformation we obtain

1

PR)=na@ ————E__(R), 3.18

oy L B.18

an expression that can be easily seen to be equivalent to the

Clausius-Mossotti formula given by Eq. (3.7). This means
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that as long as the external field does not vary appreciably
within a length of order a, the Clausius—Mossotti is a rela-
tion of very general validity.

Corrections to the Clausius—Mossotti formula will arise
for systems under the influence of external fields varying
rapidly in lengths of the order of atomic dimensions,'*'* or
from the breakdown of the dipole approximation. Al-
though our model is a classical one, a quantum-mechanical
calculation on a more realistic model will not change nei-
ther the structure of our results nor the validity of our
conclusions. '
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