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A simple formalism is developed for the calculation of the optical properties of a nonlocal
system, treating the continuous change of its response functions near the surface as a pertur-
bation. The surface impedance is obtained in terms of the surface impedance of the unper-
turbed system and of the surface conductivity. The results are very general since no as-
sumption about the unperturbed system is made, and it is shown that they include those of

previous theories.

I. INTRODUCTION

The optical properties of systems whose response
functions vary continuously near the surface have
been studied for a long time. In 1901 Drude' calcu-
lated the corrections to the Fresnel results for the re-
flectance and the ellipsometric coefficients of a local
homogeneous system to first order in the size of the
transition region over which its response functions
change from their vacuum value to their bulk value.
Currently, the most frequently used model for the
analysis of experimental results,” due to McIntyre
and Aspnes,’ treats this region as a homogeneous
film with an effective dielectric response and an ef-
fective size. This approach is essentially correct for
S-polarized light, but it is inadequate for the
analysis of experiments involving P-polarized light
since it does not take into account the rapid varia-
tions of the electric field near the interface.* To
treat this variation correctly the surface region has
to be treated nonlocally. There are several calcula-
tions of the optical properties of nonlocal systems
with a sharp interface using the method of addition-
al boundary conditions>® and also a few microscopic
calculations, such as that of Feibelman* and that of
Maniv and Metiu,” with the use of the jellium model
of metals, that take into account in detail the change
in the response functions near the surface. Bagchi,
Barrera, and Rajagopal® have developed a formalism
for the calculation of the optical properties of a non-
local system, considering it as a nonlocal surface re-
gion that is treated as a small perturbation on the
unperturbed system, a local semi-infinite back-
ground. Improvements on their original result have
been made by Sipe’ and by Barrera and Bagchi'® by
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considering the interaction of the bulk with the sur-
face region, and by Dasgupta and Fuchs'! by using
the already-nonlocal semiclassical infinite-barrier
(SCIB) model® as the unperturbed system.

A disadvantage of the previous theories is that
each one assumes a specific model for the unper-
turbed system, limiting its usefulness. For example,
in the theory of Bagchi er al.® the electromagnetic
Green’s function of the local semi-infinite back-
ground was used explicitly. Then their results can-
not be applied without modification to slightly more
complicated backgrounds such as a metal-oxide-
semiconductor (MOS) device.!> An expression for
the change in the optical properties of a MOS device
due to the presence of an accumulation or depletion
layer could be obtained by following the derivation
shown in Ref. 8, but using the appropriate elec-
tromagnetic Green’s function for the new back-
ground, which in this case consists of several layers
(metal-oxide-semiconductor). Rather than following
this approach for every system of interest, we feel
that it would be preferable to have a general theory
relating the optical properties of a system to its
response functions near the surface and to a few
physical parameters characterizing the optical prop-
erties of the background. It is the aim of this paper
to formulate the problem of the optical properties of
nonlocal systems in this spirit.

In this paper we obtain an expression for the sur-
face impedance in terms of the surface impedance of
the unperturbed system, and the change in the
response functions relating the electric current to the
electric field and to the displacement field near the
surface. Our results turn out to be very general
since we make no assumption about the nature of
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the unperturbed system. By taking the appropriate
limits, our results reduce to those of previous
theories. Our theory is well suited to the analysis of
experiments in which the changes of the optical
properties of a system are measured when the sur-
face region itself is being modified by an external
perturbation, since all we need to know about the
unperturbed system is its surface impedance, a
quantity that can be measured experimentally. Ex-
amples of such experiments are electroreflectance,!’
optical absorption of accumulation and depletion
layers whose density is modulated by a static electric
field in MOS structures,'? and differential reflec-
tance of metals with adsorbed overlayers.!* For the
analysis of these experiments we can consider the
original system as the background, and the actual
modification to its surface as the perturbation.
With our theory we can analyze the surface proper-
ties without relying on theoretical models for the
bulk. The paper is organized as follows. In Sec. II
we develop the theory in a formal way starting from
Maxwell’s equations and the exact nonlocal response
of the system. In Sec. III we show a simple, more
intuitive derivation of the same results. Some appli-
cations of the results are discussed in Sec. IV and in
Sec. V we compare our results with those of earlier
theories. Section VI is devoted to conclusions.

II. THEORY

In this section we derive an expression for the sur-
face impedance of a nonlocal system, taking into ac-
count the change of its response functions near the
surface, by solving Maxwell’s equations perturba-
tively. Our system consists of an unspecified medi-
um in the region z >0 and vacuum in the region
z <0, and it has translational symmetry in the x —y
plane. We start by writing the dielectric response of
the system as a “background” term €° plus a small
perturbation, A€, localized around z >0,

e=&%4A¢, 1)

where we use the caret to indicate a linear operator
which is generally nonlocal, i.e., the equation D=€E
is equivalent to

Di(D)=3 [ dt'e;(T,TE;(T"), 2)
j

where i and j are Cartesian indices.

Since the system has translational symmetry in
the x —y plane, we Fourier transform all quantities
according to

B)=[ (:7?)2 e CTIE(2), (3)

where )| is the projection of T parallel to the sur-
face and Q is a wave vector parallel to the surface.
Equation (2) then becomes

(Dg(2)=3 [ dz'(eg(z2)y(EG(2)); . o
J

Since we will only work with such Fourier-
transformed quantities, we will not write explicitly
the dependence on the wave vector Q.

From Maxwell’s equations we obtain directly

which we rewrite using Eq. (1) as
2

ME= 3T N7 O peE, (6)
C C
where
e —> —> 2
M=—VXVX+—5& 7
C

Here V is the operator (iQ,,iQ,,3/0z). The
integro-differential Eq. (6) can be converted to the
following integral equation:

2 A —
E=E'— “ G A¢E, (8)
c

where the Green’s operator G obeys!®

MG=1, 9)
and the unperturbed field is a solution of

ME’=0, (10)

obeying the appropriate boundary conditions. Com-
paring Eq. (9) with (6) we obtain the following inter-
pretation for the Green’s function:

g7

Giyl(z,z')e (11)

is to be regarded as the ith component of the electric
field at z produced by an infinitesimal sheet of
current

—

¢’ QT

4w

NP =i———8(z —2")e
in the kth direction at z’ in the presence of a medi-
um with dielectric response €°.

At this point it is convenient to treat separately
the cases of S and P polarization. We shall consider
P polarization in detail and give only the final result
for the more straightforward case of S polarization.
For P polarization the electric vector of the incident
light lies in the plane of incidence which we choose
to be the x -z plane. Then the operator appearing in
Eq. (7) becomes
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¥  w? Ao .~ 0
~ 822+ _lQaz
M= 2 ) (12)
—igS g+l
Zz

where the dielectric tensor was assumed to be diago-
nal, a good approximation in the small-Q limit of
the random—phase approximation (RPA) in the case
of jellium.'® Nevertheless we shall consider also the
more general case of a nondiagonal response
(€2,€2.5#0); the details are given in the Appendix.

In order to analyze the analytical structure of G,
we use the physical interpretation already given for
Eq. (11). We notice that an external surface current
in the z direction

&M z)=(ic*/4mw)8(z —2')

produces a singularity in the z component of the
electric field, and therefore G (z,z') has a singulari-
ty at z =z'. From Gauss’s law

VD= G, Je (13)
1)
we get the singular part of the displacement field,
, 2
Di"(z)=<58(z—2") , (14)
o)
so that, according to the interpretation of (11), we

write
|

A A, C2 A0\ —1

Ga=Gr+550)", (15)
w

where é\z'z is not singular at z =z’ and (ezz) lis the
inverse of the zz component of the dielectric opera-
tor, defined by

(E2)ed)1=1. (16)

Using Eq. (15) and the identities
(€2)-'ae, =(e2) "', -1, (17)
A& (6,) '=—82ne;", (18)

where A€;15(€a)'1—(€2)_‘, we can rewrite Eq.
(8) as a pair of coupled integral equations in E, and
D,,

A
1
ze €z Aé‘\zz' z

(19)

2 2
Ex=E,?—C:—2GnA€xxEx + ‘;’2

w2

0 A
D,=D)—=6,G, Aé,.E,
4

2
D N0 A A0 A A—1
-i-—c2 €z GLEzAEL D, .

We have chosen E, and D, because both are slowly
varying functions across the interface (this is not
true for E,), and this allows us to introduce the
long-wavelength approximation. Writing Eq. (19) in
detail, we find integrals of the type

I(2)= [ dz'dz"dz""dzV e (2,2)G (2,2 )en (2" 2" Az (2,2 )D, (") (20)

which we simplify as follows.

First, we assume that D, (zw) has a small variation in the range of nonlocality of Ae, 1(z",z"), and we ap-

"

proximate it by its value at z

I(z)= f dz'dz"dz'"'e2 (2,2 )Gz'z(z",z"')Dz(z”’)(Ae;‘(z"’)) , 1)

where we defined
<A€;1(Z'”))E f dzIVAea—l(z:n ZIV) .

Second, we assume that {Aez '(z"")) is a very lo-
calized function near the surface; thus we can write

1(2)= [ dz'dz"ed(2,2')G(2',2")
X €9(z",2°D, (2 Aeg ') | (22)
where

«AEZ;I» fdz'"deIVAG ( o IV)

and z° is any position near the interface. The con-
sistency of these approximations can be verified a
posteriori.

[

In arriving at Eq. (22) and similar equations cor-
responding to the other terms in Eq. (19), we have
made the implicit assumption that the functlons of z
and z' representing the operators euG ez, engzx,
G ezoz, and Gx,, are also slowly varying. This is not
obvious and it needs Justlflcatlon smce we expect the
background dielectric constant €° to vary abruptly
near the interface. Instead of proving this assump-
tion in general we make it plausible by analyzing
what we consider to be an extreme case, i.e., a local
system with a sharp interface. In this case

€%z,2")=(e%2))8(z —2") ,

where (€%z)) is constant both outside and inside
the medium and has a discontinuity at z =0, and we
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have to show that (e2(z))GL(z,z'){el(z")),
(€2(2)) Gnlz,2"), Gylz,2')(€2(z")), and Gyy(z,z")
are slowly varying functions of z'. For z=£z/,
G,(z,2') =Gg(z,z') and the Green’s functions
are®!’

Gij(z,zl) Cz,Ll-,'(Z)V,-(Z')e(Z —z')
+v;i(z2)u;(2")0(z' —2) , (23)

where u and v are the solutions of Maxwell’s equa-
tions for the electric field of the unperturbed system
obeying outgoing boundary conditions at o and
— o0, respectively, and © is the Heaviside unit step
function. We can assume pu(z’) and v(z') to be slow-
ly varying for z'-£0. The functions v,(z') and u,(z’)
are continuous at z’=0 because the parallel com-
ponent of the electric field is continuous and
v,(z')(€2(z")) and p,(z'){e2(z')) are continuous
because the normal component of the displacement
is  continuous. Therefore  Gi(z,z') and
Gy(2,2')(€2(z")) for zs£z' are slowly varying func-
tions of z'. A similar argument shows that G,;(z,z’)
and (€2(z))Gy(z,z") are slowly varying functions of
z. For z=z', G,,(z,z') and G, (z,z') are discontinu-
ous and G.(z,z’) has a 8-function singularity. Then
our approximations are valid only when z is in the
region where (A€, (z)) and (Aeg '(z)) =0, for ex-
ample, z <0.

Since the results should be independent of z° for
our approximations to be consistent, we can choose
20=0-, just outside the medium and in vacuum. In
order to obtain the surface impedance we only need
the value of the fields in vacuum where
€2(z,z')=8(z —z'). Thus setting z <0 in Eq. (22) we
finally obtain

I1(z2)=GL(z,0~ K AeZl)) . (24)

Evaluating the remaining integrals of Eq. (19) in
the same fashion we obtain for z <0,

2
E((2)=EX2)— -Gy (2,07 ) Ay WE, (0~
C

2
+25-G(2,07)(Aez ' N D, (07)
c (25)

D,(2)=D2(z) — =G (2,07 ) Aeyy DE,(07)

co2 ’ 1
+c—sz(z,0 ){Aez ' WD,(0~

Notice that we only need the Green’s function
G,j(z,2') for both z and z’ in vacuum. This is easily
calculated from its physical interpretation (11). We
consider the radiation towards vacuum from an in-
finitesimal sheet of current j (x,z)=16(z —0~)e'®*
located just outside a medium of dielectric response

w
Q /c j
q [ 6’2
VACUUM |~ BACKGROUND
LIR
SHEET—1
| p
0 z

FIG. 1. The radiating sheet at z=0" is shown in front
of the background. The wave vector of the radiated field
is also shown, together with its components Q and q. The
positions just to the right and left of the sheet are denoted
R and L.

€° and surface impedance ZJ (see Fig. 1). We solve
this problem using elementary methods of classical
electromagnetism.

We first notice that, in general, the parallel com-
ponents of both the electric field and the magnetic
field are discontinuous at the sheet since there is a 6
function singularity in the normal component of the
electric field and in the parallel component of the
electric current. Integrating Maxwell’s equations for
the curl of E and of B, we obtain for the fields to
the right and left of the current sheet,

4
Ef_Ef wQ lz,
(26)
R L__ —A47 .
By ——By ———‘g'—lx ’

which with the definition of the surface 1mpedance
of the substrate and of vacuum Z3=ERX /B and
Zp=—E; /Bf‘ (the minus sign appears since the ra-
diated f1e1d moves toward — oo) give the radiated
fields for z <0,

417Qt. n 47721(’) .
z

L x
BfF= ,
’ Zp+Zp
E (z2)=—ZpBfe ', ox))
E,(z)= _—QCB;‘e —igz
(0]

Finally, using (11) we express G(z,07) in the vacu-
um region just in terms of the surface impedance
Z3, without referring to any specific model of the
unperturbed background, that is,
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cZ3Z9 ,
Gxx(Z,O_)=_i_—;]£_L6_e—-lqz ,
w(Zp+Zp)
2z '
ze(z,O_)=_i_Q£___P_e —igz
2 v 0
o ZP+ZP
79 (28)
sz(Z,O_)——l—Q—q—__P—e —igz ,
wz ZP+ZP
2.3 —igz
G, (2,0‘)=_i£c__e_____ . 2<0.
i w? Z3+7Z9

Combining Eqgs. (28) and (25) and taking the limit
z—0~ we get two coupled algebraic equations for
E,(07) and D,(07), which we write as

B)O) 4n _ Zp
y(o ) ¢ Zp+Z

Zp=

X |ZPZp U Aoy )

where we used D,=(—-Qc/w)B,, E,(07)
=ZpB,(07), and EQ(07)=ZpB,(07). Here we in-
troduced the conductivities o and s defined as the
current—electric-field and the current—
displacement-field response functions and given by

i+fﬂA
_i_Amis (30)
w

The final step in our derivation is to solve Eq. (29)
for the surface impedance, which takes an extremely
simple form:

2
Zp+H TG (s )
1+ Z3( A0 )

Note that the surface region is characterized by two
complex functions of frequency ({{Ao,,)) and

» (29) ((As,, ))), whereas in McIntyre and Aspnes’s model
’ it is characterized by one complex function of fre-
O quency (the surface dielectric constant) and one real
_ B,(07) Am 1 parameter (the size of the surface region).
B,(07) c Zr+2Z3 Following a procedure similar to that above, we
Y s . .
- obtain in the appendix an expression for. the surface
X | 29Zp € Ay H— Q i CAsy) |, impedance w1t'hout mak'mg the assumptlon‘that the
1) response functicns are diagonal. The result is
I
232 [i2 (el HZE—i0 K ez
Zp= . (32)
1—z~« A€y, »ZP+z (Aer(€z) lex NZP—iQ K (e2) ' Aey ) —iQ € A€ e )
[
The surface impedance for S polarization is easily T= f dzA7(2). (34)

derived following an analogous procedure. We find

0
Zs= Zso : (33)
+(4m/0)ZI( Ay, )

III. ALTERNATE DERIVATION

An alternative, more intuitive derivation of Eq.
(31) will be shown in this section. Since we are as-
suming that the size of the surface region is small
compared with the wavelength of the incident light,
it is reasonable to expect that the result is not sensi-
tive to the actual distribution of the excess current
density appearing on the right-hand side of Eq. (6),
but rather it depends only on the total surface
current

This suggests a very simple model for the calcula-
tion of the surface impedance of the system. The
model consists of the unperturbed system character-
ized by its surface impedance Z9, with an infini-
tesimal sheet on top of it carrying the total surface
current given by Eq. (34). Since A j 7 =AcE=AsD
and E, and D, are slowly varying, the currents in-
duced in the sheet are taken to be

i,=(Aoy NE0),
(35)
i;={(Asz ) D,(0) .

Note that since, in general, all the fields are
discontinuous at a sheet carrying a singular surface
current, there is an ambiguity in the meaning of
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E.(0) and D (0 For example, we could take E,(0)
to be EL, > (E +ER), or EX. This ambiguity has
appeared previously in the study of surface rough-
ness.!® Here we choose to evaluate the fields at the
left side of the current sheet because with this choice
we arrive at exactly the same expression found in
the previous section. However, we point out that for
any other choice, although the analytical expressions
for Zp are different, the numerical results are the
same if the long-wavelength approximation is valid.

The boundary conditions obeyed by the fields at
the position of the surface current are already given
by Eq. (26). Combining them with Eq. (35), the
identity D, = —(Qc/w)B, and the definition of the
surface impedance, we find

L L

B B,
—14 =T (Ar N Zp
¥y ¥y
(36)
Bf BL
2p-2p 2= 4"Qc<<As D
¥y y

which are easily solved to give Eq. (31).

IV. APPLICATIONS

The optical coefficients can now be obtained in
terms of the surface impedance using standard for-
mulas. As examples we consider the reflection am-
plitude for P-polarized light incident at an angle 6
and the surface-plasmon dispersion relation. The
former is given by

_ZP

=", (37)
P zp+vz,

where Zp=cq /o (=cosb), is the surface impedance
of vacuum and ¢?’=(w?/c?)—Q?* For a diagonal
response, using Eq. (31) and after some algebra, we
get

rp 87Zp

R [P —
rp (Zp)*—(Zp)

0y2
Q% sy -2 (azd
© z
(38)
where we have defined
(AT N=(Ao, N /A, (39a)
(A N =(As, ) /A, (39b)

and

A=1+427(147D)
«Aaxx»
C

Zchz (As, )

(39c¢)

and rp is the reflection amplitude of the unperturbed
system. From Eq. (38) the differential reflectance

ARp/Rp=(|rp|*~|rp|)/|rp]|?

between the unperturbed and the perturbed system
to linear order in {(G,, ) and (AS,, )) is

ARp V43
=—16mRe | —————
RP (Z ) (Zp)
2
27 Az,
(Z3)?
- : (AT ) } (40)

This result can be applied to the analysis of elec-
troreflectance experlments involving P-polarized
light'®=2! with ZJ the actual surface impedance
of the metal in the absence of the static electric
field, and (Ao, ) and {As,)) characterizing the
change in the response of the metal near its surface
due to the presence of the static electric field.?> The
result could also be applied to analyze the change in
the reflectance of a metal due to the deposition of an
adsorbed overlayer.”>?* Finally, it could be used to
make reflectance calculations that take into account
the spatial variation of the response functions near
the surface.l»*8 11

We consider now the dispersion relation of sur-
face plasmons, which is given by the poles of the re-
flection amplitude®

Zy+Zp=0, (41)

which is an implicit relation between o and Q. To
get an explicit relatlon between w and Q we need the
dependence of Z), Aoy, ), and (As,)» on o
and/or Q As a simple example we show the change
in the wave vector of the surface plasmon when the
surface region of a local medium is modified. If the
medium has a sharp boundary and (Ao, ) and
{(As,, )) are independent of Q, then

ZpZp( Aoy ) N Qic? (Asy )

47w 4 o’ ¢

Qspc ,1, L
* ek

AQsp =

(42)
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to linear order in Ao, ) and ((As,)). Here
k*=e€w?/c?—Q%, with Imk >0 and Img>0. This
expression could be applied to the analysis of the in-
fluence of a static electric field on the surface
plasmon at a metal-electrolyte interface.?~2® When
the perturbation consists of the deposition of a local
thin film, Eq. (42) reduces to an expression which
has previously been used to monitor the coverage
and measure the dielectric constant of the film.? 3!
Equation (42) can also be used to analyze the depen-
dence of the surface-plasmon dispersion relation on
its direction of propagation. This dependence has
been observed on the (110) surface of silver.’? In
this case (Ao, )) characterizes the change in the
xx component of the conductivity when the silver
crystal is rotated around the z axis. Since bulk silver
is isotropic, this change is localized near the sur-
face.*?

V. COMPARISON WITH EARLIER THEORIES

Our results, Eqs. (31)—(33) and (38)—(41), are
completely general since we have not specified yet
what the system is. In order to obtain the results of
previous theories it is only necessary to specify V43
the surface impedance of the background. In order
to show this, in the present section we compare our
theory to the theories of Barrera and Bagchi'® and
Dasgupta and Fuchs.!! We chose these because they
are the most general perturbational calculations that
we found in the literature.

First we compare our results to those of Barrera
and Bagchi,'® who considered a local background
with a sharp 1nterface for which ZJ=kc/ew,
Z8=qc /o, and rp=(eq —k)/(eq +k),where k and ¢
are the normal components of the wave vector inside
and outside the medium, respectively. Following
Ref. 10, we introduce the lengths

A, —ﬂ((Aaxx », (432)
Az=—4—’"—(< Asy)) , (43b)
K=" (a0, (430)
A=A (A ), (43d)

to write our Eq. (39) as

i
=1- kA, —eQ?
A=1 €q+k(q x—€0°A;), (44)
and Eq. (38) as
rp k2A, +€2Q%A,

P o , 45
2 1 eNQ’—eq?) 43)

which is the same as Eq. (10) of Ref. 10.34

Now we compare our results to those of Dasgupta
and Fuchs,!! who used a nonlocal background
described by the SCIB model.® They considered a
fictitious system with mirror symmetry about the
z =0 plane and with response tensor,

o'(z,z')=0p(z —2')+Ad'(z,2') , (46)

where oy is the (bulk) response of a translationally
invariant system and Ao’ is assumed to be a small
perturbation localized around z=0. The mirror
symmetry implies that all tensor operators of the
fictitious system obey equations such as

o'(—z,—2z')=ao0'(z,z')a ,
where
10 O
a=1[01 0 |. 47
00 —1

They also imposed on the E and D fields symmetries
like E(—z)=aE(z). This approach is equivalent to
assuming that the response of the real system is
given by*>36

o(z,z')=[0'(z,2")+0'(z,—2")a ]O(2)O(Z') .
(48)

In principle, to get their results it is enough to use
the SCIB expression for z3 p in Eq. (32). However, to
take advantage of the translational symmetry of oy
Dasgupta and Fuchs developed their theory in
Fourier space and they obtained the surface im-
pedance of the perturbed system in terms of multi-
ple integrals over momentum of the response func-
tions of the fictitious system. Since in our Eq. (32)
Zp is written in terms of integrals over real space of
the response functions of the real system, the com-
parison between our expressions for Zp is not so
straightforward. We will show below that if their
expression for Zp is written in our notation, it be-
comes identical to our expression for Zp. First we
need some formal results. . .

Consider three operators f', §’, and A’ with mir-
ror symmetry about the z=0 plane [ie,
f(——z, —2z')=af'(z,z')a] and define f, g, and h
in terms of them as shown in Eq. (48). It follows
that if h’-—f”" then

h=f¢, , (49a)
h(p,p")= f _: %pﬂ—f (p.p")g(p"p") (49b)
(hyx ) =7hex(p =0,p'=0) , (49¢)
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1 o he(p =0,p")
— Thie.22' it 48 (49d)
ChaW=5— [ dp o :
1 ® h, (p,p'=0)
=—" —_— 4
Choh=—5— [ dp ) , (49
1 o hz(p,p’)
hpW=—s [ dpdp' 2 . (49f)
Chad=>—5 [ dpdp p

The result (49a) follows from the symmetry of f’
and g’ and Eq. (49b) is an immediate consequence of
Eq. (49a). Equations (49c)—(49f) are derived by
writing.

h(z,z')= %[h (z,2")+h(z,—zYa4+ah(—2zz")

+ah(—z,—2z")a]0(2)0(z") ,

evaluating (%)) =h (p =0,p'=0) with the convolu-
tion theorem [the Fourier transforms are defined in
Egs. (9)—(11) of Ref. 11] and using the transform of
the step function

O(p)=1/ip +m8(p) .

Now we consider Eqgs. (21)—(32) of Ref. 11,
which give expressions for the quantities F(p), f;(p),
I;, Z3, and Zp that appear in the following discus-
sion. In order to arrive at their results Dasgupta
and Fuchs assumed that E,(z) and D,(z) were con-
stants over the region where Ae(z,z’) is nonzero. It
follows that Ae(p,p’) is constant for p,p’'<w/c.
Since F(p) grows as p? for large p, the main contri-
bution to the integrals over p in their Eq. (30a)
comes from the small-p region, and we can put
fi(p)=/£:(0), i =1,2,3 to obtain, using Eq. (49) and
their Eq. (31),

1= "7“’28 (Aey ) , (50a)
I= ‘%"z}z« AeLes ') , (50b)
I,= —L?Zg« A€ 67 €, ) . (50c)

To get the remaining terms we notice that
fi(p =0)=0 for i =4,5,6 and then the main contri-
bution to the integrals over p in their Eq. (30b)
comes from the large-p region. This permits us to
approximate F(p) by its asymptotic expression to
obtain

I,=—iQ«(e2)"'Aey ) (51a)

Is=iQ{Aez") , (51b)

Ie=—iQ{Aez e )) (51c)

so their Eq. (32) becomes identical with our result
Eq. (32). However, note that our result is also valid
when the background is not the SCIB model.

VI. CONCLUSIONS

We have derived expressions for the surface im-
pedance of nonlocal systems whose response func-
tions are perturbed near the surface. The only as-
sumption made in our derivation was that some
components of Ae and Ae ! are localized in a re-
gion smaller than the scale of variation of the
parallel-to-the-surface component of the electric
field and the normal component of the displace-
ment. The results were written in terms of the sur-
face impedance ZJ and ZJ of the unperturbed sys-
tem and the surface conductivities (Ao, ),
Aoy, ), and (Asy ) relating the excess surface
current density flowing in the perturbed system to
the fields at the surface. Thus our results are writ-
ten in terms of parameters that have a clear physical
interpretation.®

Our results can be used in calculations in which a
real system can be thought of as divided into a
model background whose optical properties can be
calculated exactly, and a small perturbation. This is
the approach of Refs. 10 ana 11 in which the
Fresnel and the SCIB models were used, respective-
ly, to describe the background, and the perturbation
was taken to be the continuous change in the nonlo-

‘cal response functions near the surface. It was

shown that our results reduce to those of Refs. 10
and 11 and therefore, as discussed therein, they
reduce to those of all previous theories.

The previous calculations are useful as long as the
bulk is well described by the model used for the
background and the long-wavelength approximation
is valid for the perturbation.*® However, our results
can also be applied to the study of systems which
have been physically perturbed at their surface. In
this case, both the background and the perturbed
system are real systems, and the surface impedance
of the background, a quantity that characterizes it
completely for our theory, could actually be mea-
sured by optical methods. Then we do not need
specific models for the background in order to apply
our results. Thus we believe that our results will be
useful to understand surface-sensitive experiments
like electroreflectance, in which the response of a
real metal (whose response is nonlocal, includes
local-field effects,®® and changes continuously near
the surface) is physically perturbed by a strong elec-
tric field in a small region measuring a few
angstroms in width.
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APPENDIX

In this appendix we extend our results in order to handle the nondiagonal components of the response.
Equations (6)—(10) remain valid even for a nondiagonal response. We have

E,=(&,)"'D,—(&,) "6, E, , (A1)
with which we write Eq. (8) in detail in terms of E, and D,:

Ex:E,?_‘;’—;{(éxx)[A@n]+<@x,€g)[{€,‘1;—IA@x]—(6xx>[A@x,{@z,}—“ 1+(G L&) A8 "6, 1) E,
—%{(@gm@n{euz-1]—(éx,€,‘;>[A@;1]}D, , (A2a)
DZ=DB+€2¢(EX—EB)—(:—22{(GZZ o A& 1+ (€3G LE (€2}~ Ae ]
— (626 )[A8, (6, e ]+ (626 LE0 A6, 6, 1) E,

2 A
— (6688 (&) ] - (@G A6: ' )D; (A2b)

where we inserted several factors of i:é‘g(@g)_’ and used repeatedly the identity (18). Note in Eq. (A2) that
the functions representing the operators within parentheses are slowly varying, as discussed in the main text,
while the terms within square brackets fall rapidly to zero as their arguments go away from the surface. Then
we can approximate Eq. (A2) following the steps that took us to Eq. (25) to get for z <0,

Ex(z)=Ef(z)—i)—;[Gxx ) A ) +Grr(2,07)K (€2) Ay )
—Grx (2,07) € A€ (€2) 7€ N + G (2,07 ) Ay ' WEL (0
_"’—j[cxx ) Al (em)™" W —Gan(2,07) K A N ID,(0-) (A3a)
D,(z2)=D2z) —[(Gu(z, Y A€y ) +GL(2,07)K (€)1 Ae, )
— G (2,07)(Aeyy(€) e ) +GL(2,07)( Ae; e, WIE, (0

2
— 2 [Gue (2,07 Abrz (€)™ N — G Lo(2,07 ) Aez ' ) 1D, (07) . (A3b)
c

The expressions for the Green’s functions given by Eq. (28) remain valid, so proceeding as in Sec. II, it is
straightforward to get the desired result [Eq. (32)].
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