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Résumé - Afin de déterminer les é&carts de la relation de
Tlausius-Mossotti dus aux changements du champ local pres de

1a surface des cristaux cubigues, nous calculons les propriétés
optiqges d'un réseau cubique semi-infini de molécules polarisa-
bles & 1l'aide de deux méthodes différentes: l'une est une appro-
che perturbative et 1l'autre utilise la superposition des modes
de volume. Nous discutons les régions de validité de 1'appro-
che perturbative. Nous concluons que la surface induit une
anisotropie dans la réflexion de la lumiére, qui pourrait méme
stre déceléde par la spectroscopie différentielle de la reflec-
tivité.

Abstract - In order to determine the deviations of the Clausius
“HMossotti relation due to the changes of the local field close
to the surface of cubic crystals, we calculate the optical pro
perties of a semi-infinite cubic lattice of polarizable mole-
cules using two different methods: a perturbative approach

and the superposition of bulk modes. We discuss the regions

of validity of the perturbative approach and we conclude that
there is a surface induced anisotropy in the reflectance of
light which could be detected by differential reflectance spec
troscopy. -

I - INTRODUCTION

It is well known than in order to fully understand surface sensitive
optical experiments /1/ using p-polarized light it is necessary to take

into account the non-locality /2/ of the dielectric response function.

This non-locality appears when there is an interaction mechanism, not
included in the average electromagnetic field, which correlates the
response of different points of the system. A source of non-locality
is the local-field effect, i.e. the interaction between nearby atoms
;ﬁriggh the microscopic spatial fluctuations of the electromagnetic
ield.

In order to study the surface effect of the local field in the optical
P?Operties of crystals we calculate the microscopic electromagnetic
field induced by an external electromagnetic wave in a semi-infinite
cubic lattice of point polarizable molecules. In the bulk of this sys-
tem the difference between the field which polarizes the molecules
Elocal field) and the (average) macroscopic field gives rise to the
Clausius-Mossotti relation

€-A lHTﬂq
- = 0 Y ()
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”ficﬁ connects the macroscopic local dielectric function € , and the
itomic polarizability & . Here ny is the number of molecules per unit
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volume. In order to obtain this relation it is assumed that the DOola.
rization field P and the electric field E are slowly varying func-
tions of positlon and that the crystal has cubic symmetry. These ag_
sumptions break down close to the surface of a crystal.

The correct treatment of the local-field effect near the surface o
crystals might be important in the analysis of experiments such as gy
ferential reflectance between clean and adsorbate covered surfaces /g3
electroreflectance /4/ and anisotropic surface-plasmon excitation /5/

dif
/37,

Although the model of a semi-infinite cubic array of point pola.;uable
molecules has been investigated previously /6,7 / , here we present, fop
first time, actual numerical results for the reflectance of p- polarlzed
light which show detectable anisotropy effects for different faces of
a cubic crystal as well as for polarization along different crystalliye
directions.

2 - PERTURBATIVE APPROACH

In this section we use the perturbative formalism developed in rei. g
in order to obtain the optical properties of a crystal taking into ac-
count the local-field effect close to its surface. We consider semi-

infinite cubic array, in the region 2zDo, of point polarizable molecu-
les assuming that its bulk is well described by a frequency dependent
Local dielectric function €(w) given by the Clausius-Mossotti relation,
According to ref. 8, in order to obtain the surface impedance, and
therefore all the optical coefficients of the system one has calculate
the surface conductivities & OB0xxd | & OG> and & MND%33» which re-
late the excess surface electric current density

i- [ aaqa), .

to the electric and displacement fields at the surface:

g = &AGEY Eplo) 1 k= X ey (s
i3= L 85.3» Dy(0). (%)
Here 4 j(Z) j(z) - j°(2z) where j(z) is the actual current density

of the System and j°(z) is the background current density:

) noo
'}Ls)'* £ (5)

The surface impedance of the system is then given by Eq. 31 of reZ. Z:

2 Zy + umglc wASge» Jw?
P 1 4 4n Zf)«quux))/c (5)

where 2Z° is the surface impedance of the background and the subsc
p refers to p polarization. It has been assumed that all macrosco:
fields have a dependance of the form ¢ c(@x-wtland no y dependance.

Equations (6) and (7) are valid only when the local conductivities

(DTxx (B> » (ATyy(y)d 237¢ (AGyy (3)) > defined by

A;{k=(d¢kk(3)>en_(%) ) k- xory (z)
03'3= (853 (1) Dy 13) (%)
go to zero at a distance d &« ¢/wW from the surface, thus one is abls zo

ignore the slow variation of the fields along the surface and to
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ne ject, in the calculation, retardation effects. The equations obey-
ed DY each molecule are )

o ] -

. - A . ., L\ .

@“F(E +L/n°\25(bv\l( l(t_)> (10)
when 1 and j number atomic sites, g‘is the dipole moment of the i-th

atom multiplied by Q,P=no& is the polarizability of the molecules per

unit volume and E° is the external field.

plane-wise summation we can rewrite Eq. 10 as
o
h =V (Eo* z Uﬁm.?m)
~ ~ nsy X ~ (11)

where n and m number the crystal planes at z = na and z = ma (a is the
distance between neighboring planes). It is known /9/ that the dipo-
1ar interaction Ynm between crystal planes decays to zero very rapidly
and it can be neglected whenever \n-m1 £ N, where N is a small integer.

ysing &

We solve Eq. (11) for Eﬂ by matrix inversion and the surface conducti-
vities will be then given by oo

¢-1
a5y = waleg) 2 [y - G ] kexey )
s = iwared) 3 (g, - £ (13)

In fig. 1 we show the x-component of the polarization of the surface
planes of an FCC crystal normalized to the Clausius-Mossotti polariza-
tion (PYx/Pe ., as a function of the plane number n (n=1 corresponds to
the surface) for € =-5.0. We observe that the behavior of the polari
zation depends on the orientation of the surface. If the surface has
the (111) orientation the polarization acquires its bulk value just
after one plane;
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Fig. 1 - Normalized polarization as a function of crystal plane number
f?P different faces (hkl) of an FCC crystal and for different direc-
tions (uvw) of polarization along the surface. FHere we chose € =-5.0.

for the (100) surface, the polarization takes its bulk value after ~10
crystal planes. For the (110) surface there are two non-equivalent
directions for the X-axis. 1If it points along the (1,1,0) direction
the results resemble those for the (100) surface. However, if it
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points along the {0,0,11 direction, the polarization has oscillati°n
around its bulk value and it does not decay. In this case the Pertyy,
bative method presented above will not be valid.

In order to evaluate the reflectance of the system as a function of
frequency we choose a Lorentzian model for the macroscopic dielectpic
function with

Qlw) = 4+ (Wl / (Wt - w-iw/y)) o

In fig. 2a. we show the normalized differential reflectancgbﬂpﬂggwﬁu)
for two orientation of an FCC (110) surface. Here AR *Rp-Rp , R apg
Rg are the reflectance of p-polarized light of the system and of the
background respectively. We also choose a small lifetime Y= 1/W,, g4
the polarization will always decay rapidly into the bulk due to abSOPp
tion processes and the perturbative method will then be valid. We
find that there is a range of values of W for which Aﬁp/ﬂ,is o the
order G We/C which becomes ~ 10-3 for W, close or within the vigsible
spectrum. We also find a surface induced anisotropy in the reflec-
tance which is of the same order of magnitude.

We have also found similar changes in the reflectance between different
faces of the same crystal.
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Fig. 2 - Normalized differential reflectance for an FCC (110)
versus W/Wowith the X axis along [110] and {001] > wp s 110, and th
of incidence equal to 60°. (a)w,Y =1 and (b)w,y =100.
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3 - SUPERPOSITION OF BULK MODES

When the polarization does not decay to its bulk value near the surface

of the macroscopic field along the surface. We have found that in this
case we can write theequations obeyed by the polarization in the follow
ing form
L ~ R . -
?n=f‘[§“ +Eg f@~?n +L\ﬁ}nm Pm] (1)
~ ~ ™M ~ ~

where gk and E& are the radiation fields that arrive to the n-t
traveling to the left from the (n+l)-th plane and traveling to =-
right from the (n-1)-th plane respectively (the z axis points t-
right) and ¥-Pw is the radiation reaction of the n-th crystal pl
itself. an\ﬁs a short range interaction which can be truncate-
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. small number N of neighbor planes, and it differs from the dipole
j’teraction gwmof the previous section by small terms which become un-
iooortant in the final results.

right and left-traveling fields obey simple recurrence equations:

~he
Tne

- -+ L .
Eney = (En + @5 o) 5% (16)
<3 R R '
Ea-a ® {En + {—E«' ) e 4% (17)

L QQ? .
Jhere % -gn and § - [* are the fields radiated to the left and to the
right by the n-th plane, and €#?{44is the phase change the fields ac-
_uire on traveling the distance a

in an infinite system, the coupled equations (15)-(17) have Bloch-like
solutions with a dependence on n of the form @wpilng,where k obeys one
s following dispersion relations:

Wt weset - QY (18)
A te-0/2m) 2\:;\ (Womlex A-Cosmbka ) = 0 (19)
4+ {(e-1y/2m) f (WomYqy (A- cos mha) =0

el (20)

Eg. (18) is the usual macroscopic dispersion relation which has two so-
Jutions, while the solutions of Egs (19) and (20) correspond to 2XN

spansverse and 2N longitudinal microscopic modes, respectively.

In the semi-infinite crystal the solution of Egs. (15)-(17) is a super-
position of the bulk modes shown above, which automatically fulfills
Eq. 15 for n)N. The amplitude of each of these modes is determined by
the following boundary conditions: (i) the incident field equals the
radiation field traveling to the right at the surface, (ii) all the
modes inside the crystal decay to the right and (iii) Eq. (15) is obey-
ed for the first N planes. Once the amplitudes are calculated one ob-
tains the reflected wave as the radiation field traveling to the left
at the surface.

In fig. 2b we show the normalized differential reflectance for a trans-
parent material with ¥ =100[Ws .

‘This calculation agrees with the perturbative approach in the region
W {w, wvhere all the microscopic modes are spatially decaying, but it
differs in the region WY W, where some of the microscopic modes propa-
gate. We also find a.surface induced anisotropy of the same order of
magnitude as the one which appears in dissipative materials.

Although the model we used does not correspond to some specific mate-
rial we expect that in an actual crystal evem if the Clausius-Mossotti
relation does not hold exactly, the surface induced anisotropy will re
main of the same order of magnitude and, therefore it will be detecta-
ble with the actual attainable resolution.

We also expect surface induced anisotropy in the dispersion relation
of the surface electromagnetic modes of the system and the results of
these calculations will be reported elsewhere.

Other effects which might also become important in relation with the
surface local-field are: surface reconstruction, surface relaxation,
?iCPOSCOpic roughness and adsorbed overlayers. These are now under
investigation within the framework of the model used here.
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