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We report an RPA-calculation of the high-frequency contribution to the
surface energy of metals. Further, on the same basis, we derived the
Lifshitz expression for the Van der Waals energy between metallic half-

spaces.

RECENT work on the electronic properties of metallic
surfaces shows that the ‘variational’! and the ‘single’?
particle’? treatment of the Hohenberg—Kohn—Sham 34
theory (HKS) for a jellium model leads to negative
surface energies if r, < 2.5. Two approaches have been
carried out in order to correct this discrepancy: 1. Lang
and Kohn 2 modified the jellium model by introducing
(non-selfconsistently) the pseudopotential of the
surface ions, which, for the materials considered, leads
to (positive) surface energies of the correct magnitude.
2. On the other hand Schmit and Lucas® and Craig,6
within the jellium model added surface plasmon
contributions (obtained in a semi-quantitative way)

to the HK-energy functional in order to complete its
non-local part. This treatment leads also to reasonable
results, although a number of details have been
criticized.” %

Presumably, both surface structure and surface
plasmons play an important role. The fact, however,
that jellium HK-theories of the image potential and
of Van der Waals forces (both surface plasmon effects)
also fail?+1% suggest to study the surface plasmon
contributions to the surface energy in more detail. In
the present work we report an RPA-calculation of the
high-frequency contributions to the surface energy
which leads to the resuit of reference 5 and shows
some of its underlying assumptions. The details of
the calculation will be published elsewhere. We start

* Present address: Instituto de Fisica, Ciudad

Universitaria, Mexico 20, D.F., Mexico.

979

from the following expression® for the interaction
energy of an inhomogeneous electron system

Epe = 12—1—_ [dz [dwax(z. z,w) (1)
2 X 27 . .
where K is a wave vector paralle] to the surface, z is
the direction perpendicular to the surface and€ is a
contour around the positive w-axis. Here a is the
linear density response function defined through the
following relation:

6p(1) = [ d2a(1,2) 8pexy(2) (2)

where 8p.y, is an external test-charge and &p is the
induced charge in the system.

The function a can be related to a linear density
response function (1, 2) defined by

8p(1) = [ d2 (1, 2)[8pext(2) — 8p(2)] (3)
through the following integral equation:
ag(z, 2') = Bg(z, 2')— f dz2"Bk(z, 2") ag (2", 2') (4)

where we have Fourier-transformed a and §in a
direction parallel to the surface. If we now replace, in
equation (4), B by the density response function a°
of the non-interacting system we obtain an integral
equation for « in the RPA.1! This equation contains
already the effects of the collective excitations.

Restricting ourselves to frequencies higher than
the single-particle excitations one is able to express
o® by its high frequency limit*2 . At this respect we
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are able to show that the high frequency limit13—1%
of ® can be written as

lim w2, 1 w) =
[75 R g

—wp (n (1) 8(r, — 1) —Vin(r,) Viv(r, — 1)) (5)

where w? = 4nn; e?/m. v is the coulomb potential and
n(r) = po(r)/n, is the reduced density of the non-
interacting system.

It is now convenient to split « into two parts
= of +o° (6)

in which o® and o’ correspond to a bulk and surface
term as it will become apparent in equations (13) and
(14) below. Here

NGz) ,

- - 7
e e )
where
N@) = (Wi /whHn(z).

Thus, combining (4), (5), (6), and (7) we obtain within
the RPA the following integral equation for S :16
I NG #0G=2) g
2(1—N@) (1 —NEY)

Bz )= —

l I
21 N()

jdfsgn(z—;)e'“‘z S5, 2) (8)

where the coulomb potential v has been already
Fourijer-transformed in the direction parallel to the
surface and N'(z) = dM(z)/dz.

For an arbitrary K one obtains a% to be complex
corresponding to a decay of surface plasmons into
electron—hole pairs. A solution of (8) leading to stable
surface excitations and thus to a well defined surface
energy can be obtained if we confine our attention to:

(i) a charge density profile described by
n(z)=1

n(z) = arbitrary decaying function

forz<—a

where a is a measure of the surface diffuseness.
(ii) values of K and a such that

Ka €1 9)

Under these conditions the integral equation (8) can

for—a<:z:<0
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be written as

_ 1 N@ ]
k(@ 2) 2(1=N@) T =NGE)

[6(z—2") XK' — (2 —z)eK2)

0
1 N :
+—;—,ff(z):£d§sgn (= a5, )

(10)
This integral equation can be transformed into a first
order differential equation which can be solved im-
mediately to give
Bz ) = @)

N , ]
(1 =N [e(z )T TN l

for—a<:z<0and —a<:z <0. The constant
appearing in the solution of the first order differential
equation has been determined directly through (10).

In the expression (1) for the energy

—N(@) N
(1 = N@))* 2—N(—)

ax(z,2) = > (12)

is required.

Insertion of o® and (12) into (1) and integration
along the contour leads to the following expression
for the energy as a functional of the density:

= e

rw '
[_E\/n(z)é(O) % \/_——(\/n+ ]/\/7)} (13)

Integration over z gives correspondingly

hoo 1Y hw 1
E‘““E%’ e 50y L + 2§5\—/§(1 \/ﬂ)(m

where L repiesents the dimension of the system in the
direction perpendicular to the surface. Here the first
term is the well known bulk energy term. The second
term is the surface energy and it originates from the
term proportional to n’ in equation (13).

Thus, if we are allowed to introduce a cut-off
wavenumber K, in the second term of (14) this will
become identical to the result obtained in reference §
by intuitive arguments. In addition we would like to
emphasize that this quantity is not composed of bulk
and surface contributions as suggested in reference 7.
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Further we report that we have applied the same (The total energies corresponding to (14) and (16),
procedure as above to calculate the Lifshitz-formulal” by use of Feynman’s theorem, are twice the interaction
for the attraction energy of two metallic half-spaces energies.)

separated by a distance d. The functional form

(corresponding to (13)) turns out to be quite compli-

cated. However, since in the expression for the energy
the weight of the terms with X do not contribute ap-

preciably we are able to write the functional corre-

As summary we can say that in the calculation
surface energies as presented here the basic assumptions
are:

(i) the validity of the RPA,

sponding to the Van der Waals energy approximately (ii) a relatively sharp electron density profile,

mt

If we further assume that the sum over K is limited

corresponding to Kg €1

Y hwp o-2kd M '(7V2/8) +/n) (iii) the validity of the high-frequency expansion
=—]d 7 (15) 0
k16 Wn+1A/2) of a®.
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