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Electronic structure of a two-dimensional Penrose lattice: Single- and two-component systems
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The electronic structure of a two-dimensional Penrose lattice is calculated within the tight-
binding Hamiltonian. By means of the cluster Bethe-lattice method, we study the dependence of
the local density of states (LDS) on the cluster size for two different geometries. We find that very
large clusters are necessary to obtain the main features of the LDS. The method is applied to a
single-component system and to an ordered binary alloy.

I. INTRODUCTION

The experiments of Schechtman et al.! that showed
the existence of quasicrystals opened a new field in
solid-state physics. The characteristic of those systems
is the presence of a new kind of order that is neither
crystalline nor amorphous; i.e., the x-ray diffraction pat-
tern of those samples shows icosahedral symmetry, in-
compatible with traditional crystallography.>

Several models have been proposed to explain the
unexpected experimental results obtained from rapidly
cooled Al ggMnyg 14 alloys.> Among others, the three-
dimensional extension of the Penrose lattice seems to be
an acceptable model, which reproduces the observed
crystallographic data.* A question that naturally arises
is, what are the physical properties of this new kind of
materials? Some answers on the electronic and vibra-
tional spectra have been given in recent papers.’”’
However, those properties are far from being fully un-
derstood and a more extensive study is still necessary.

The Penrose lattice is formed by two-dimensional tiles
that cover the plane completely in a nonperiodic
fashion.®>® A simple model of the quasicrystal consists
in assuming that the atoms occupy the vertices of the
tiles and that the electrons hop only through the edges.
As a consequence of the lack of periodicity, it is not pos-
sible to obtain an exact solution of the electronic spectra
and only numerical results can be obtained for finite
clusters.

Here we study systematically, in the framework of the
tight-binding Hamiltonian and within the cluster Bethe-
lattice method'® (CBLM), how the electronic local densi-
ty of states (LDS) depends on the local geometry and on
the cluster size. The reasons for using the Bethe lattice
as a boundary condition are the following:'® (i) the den-
sity of states of the Bethe lattice is smooth and feature-
less; consequently any structure found in the local densi-
ty of states of any specific atom in a cluster Bethe-lattice
system is very closely associated with the local environ-
ment of this atom; and (ii) the Bethe lattice allows us to
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close in an analytic way the coupled set of equations for
the local Green’s functions.

First, we consider systems with one component in two
different geometries, and calculate the LDS at sites with
different local environments. In general we find that, in
contrast to the crystalline case, large clusters (~ 100
sites) are necessary to obtain the main characteristics of
the LDS. In addition, we find that in one of the
geometries a localized state appears at the center of the
band, at the central atom, and in ten equivalent sites of
coordination number three, in agreement with what has
been reported previously’ using symmetry arguments.

It is a characteristic of the Penrose lattice that it can
be subdivided into two nonequivalent sublattices,” @ and
B, such that an electron in an a site hops only to f3 sites
and vice versa. We have also investigated the electronic
spectra of a binary alloy 4,B, (y =1—x) that is com-
pletely ordered in those sublattices; i.e., the 4 atoms in
a and the B atoms in (3 sites. In this case, we have
chosen as a boundary condition for the Bethe lattice the
virtual-crystal approximation (VCA). To our knowledge
these are the first results published for the case of a
binary alloy in the Penrose lattice.

The CBLM formalism as applied to the Penrose lat-
tice is given in Sec. II, where we present the equations of
motion for the local Green’s function for both cases, the
single-component system and the alloy. Our results are
presented and discussed in Sec. III.

II. THE CLUSTER BETHE-LATTICE METHOD

The cluster Bethe-lattice method has been extensively
applied to the study of the electronic,!' magnetic,'? and
vibrational'® properties of alloys and single-component
systems. It is a real-space approach in which the local
topology of a given cluster of atoms is taken exactly into
account and the rest of the crystal is simulated by a
Bethe lattice.

In this study, we have calculated the LDS at various
sites in clusters of different sizes in a Penrose lattice.
The calculation is based in the tight-binding Hamiltoni-

7342 © 1987 The American Physical Society



36 ELECTRONIC STRUCTURE OF A TWO-DIMENSIONAL . . . 7343

an, which, under the assumption that the hopping ma-
trix elements (¢) are the same between nearest neighbors
and setting the zero of energy in the on-site energies,
takes the form

H=—3:t]|i)j]| . .1
ij

We illustrate how to calculate the equations of motion
for the local Green’s function of the Penrose lattice by
the following example. Let us refer to the cluster of 46
atoms shown in Fig. 1(a). From the Dyson equation one
obtains the coupled set of equations:

EGypy=1-5tGy ,
EGy=—1tGyp—2tGy ,
EGyp=—2tG;g—2tG3—1Gy ,

EGa= —21G—2tGsy
EGu=—1Gy—2tGsy—2tGgo—2tyGyp ,
EGsy=—1tG3—1tG4—1Gy ,

(2.2)

EG60= —tGw'—'tGﬂ)-t’yGw N
EG7O = —2!G50 _21660 —-t‘yG7o N
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FIG. 1. Local density of states at the central atom of the
clusters shown on the right-hand side. The energy is given in
units of the hopping matrix element.
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FIG. 2. Local density of states at the central atom of the

clusters shown on the right-hand side. The energy is given in
units of the hopping matrix element.

where we have closed the set of equations (2.2) assuming
a Bethe lattice of coordination number z outside the

cluster, and the transfer function y is given by
y={—E+[E*—4z-1]1"?}/2(z—1) . 2.3)

The average coordination number in the Penrose lattice
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FIG. 3. Local density of states at the site marked with a
solid circle, calculated in the CBLM (solid curve) and within
the recursion method (Ref. 5).
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is ~4.8; however, some states at the edges of the band
are lost when the cluster is saturated with a Bethe lattice
with that coordination number. In order to avoid this
problem we took a larger coordination number (5.5),
which is already enough to satisfy the normalization
condition. Once the local Green’s function is known,
the LDS can be calculated from

poE)=—ImGy(E) /7 . (2.4)

All the densities of states shown in Figs. 1-6 were calcu-
lated in a similar way.

We consider now the case of a binary alloy 4,8,
with a Hamiltonian of the form

H=S¢ || =3t , (2.5)
i i,j

where the energies g; take values 0 (8) if the atom under
consideration is 4 (B) and where for simplicity we ig-
nore off-diagonal disorder.
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FIG. 4. Local density of states at the sites marked with a
circle, a square, and a triangle in Fig. 1.
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FIG. 5. Local density of states at the sites marked with a
square, a circle, and a triangle in Fig. 2.

We considered only the case with the highest spatial
order, i.e., where all nearest neighbors of a given atom
are of the opposite kind. The cluster is shown in Fig. 7
and corresponds to an A 43B(s; alloy. The equations
of motion in the case where the central atom is of type
A are
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FIG. 6. Average density of states of the 31-atom subcluster
of the 111-atom cluster shown in Fig. 1(c) (solid curve) and the
LDS of the central atom of the same cluster (dashed line).
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FIG. 7. Penrose lattice showing the ordered binary alloy
whose electronic structure was calculated.

EGopo=1—5tGyq

(E —8)G 1= —1G op—21G 19— 2tG 3o ,
EGy=—2tGp—1Gy ,
EG3=—1G g~ 1G4 —1Gs »

(E —8)G 4= —1Gy—2tG3g—2tGey—1tG 1y ,

We embedded the alloy cluster in a medium with an
average on-site energy (virtual-crystal approximation)
E=XE 4 +y €p.

III. RESULTS AND DISCUSSION

We considered two types of geometries (we call them
types I and II), constructed with thick and thin rhom-
buses, with sides of equal length. As a first approxima-
tion, we assume that the hopping integrals in the tight-
binding Hamiltonian are the same for the whole system.
A more accurate calculation should consider the various
local atomic environments characteristic of the Penrose
lattice.

Figures 1 and 2 contain the LDS at the central site of
the various clusters considered and shown on the right-
hand side. The number of sites taken into account ex-
actly in clusters a, b, and ¢ of geometry I are 46, 71, and
111, respectively. The main characteristic of the LDS is
the central peak that grows as the number of sites is in-
creased. Simultaneously, the density of states at the
nearest minimum decreases. Extrapolations of numeri-
cal calculations’ indicate that the state at E =0 is strict-
ly localized with a weight of 0.09+0.01 in the middle of
a gap with limits Ey=10.163%0.007. It is clear that in
order to obtain those properties, clusters much larger
than those considered here are necessary. However, the
main trends are already present in our results. For ex-
ample, the integration of the number of states in the cen-
tral peak in the largest cluster (111 atoms) already yields
0.1.
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Very different results are obtained for the geometry of
type II. In this case a minimum in the density of states
is obtained at E =0, leading probably to a gap for
infinite clusters. The number of atoms in the clusters
considered here are 41, 61, and 106, respectively. A
comment that applies to all the densities of states calcu-
lated in the CBLM is that the high peaks that appear at
the edges of the band do not have any physical
significance. They are produced by the interface be-
tween the cluster and the Bethe lattice and in general get
smaller as the size of the cluster is increased.

We also calculated the LDS at noncentral sites. Fig-
ure 3 contains the results for the LDS at the three-
coordinated site marked by a solid circle in Fig. 1(c)
(solid line). The LDS at the same site (dashed line), cal-
culated by the recursion method for 200 levels,’ that cor-
responds to a system of approximately 3000 atoms, is
also shown for comparison. One observes that the cen-
tral peak and the two shoulders are already present in
our calculation.

Figures 4 and 5 contain the LDS calculated at the
sites marked with a square, an open circle, and a triangle
in Figs. 1(c) and 2(c). These results clearly show the
dependence on the local topology. It is worth noticing
that the peaks at the edges of the band get higher, the
nearer the atom under consideration is to the boundary.

We calculated the LDS at all the sites of the subclus-
ter marked with the thick line in the cluster shown in
1(c). The average LDS obtained from the 31-atom sub-
cluster is shown in Fig. 6 and compared with the LDS
obtained for the central atom. One observes that the
central part of the two LDS’s is very similar and that
the main difference is at the edges, due to the boundary
effects mentioned above.

In Fig. 8 we plot the integrated density of states D (E)
as a function of energy for the central atom in the clus-

FIG. 8. Integrated density of states as a function of energy
at the central atoms of the clusters shown in Fig. 1(c) (solid
curve) and 2(c) (dashed curve).



7346
TI.O
4
4
O,
_50- et —t—t . + 50"0
ENERGY / t

FIG. 9. Local density of states at the central atom (A4) of
the Penrose binary alloy shown in Fig. 7, for several values of
the diagonal disorder 6 =€ —¢ 4.

ters shown in Figs. 1(c) and 2(c). The solid (dashed)
curve corresponds to the geometry of type I (II). One
sees in the solid line a central step that is expected’ to
become steeper as the cluster size increases, due to the
presence of the localized state mentioned above.

The results for the LDS at the central site in the or-
dered binary alloy Ag43Bg 57 with geometry of type 1I
are shown in Fig. 9. It corresponds to the most ordered
array, where each 4 (B) atom is surrounded by B (A4)
atoms. The third coordinate is the difference in the on-
site energies e —€ 4, =8. One sees that the consequence
of the spatial order is to stress the tendency to form a
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gap between the values of g;. In the case of inter-
penetrating sublattices with an equal number of sites, a
gap appears due to the additional symmetry of the sys-
tem. One also observes small modifications in the peaks
near the gap region with an increment of the number of
states in the low-energy region (E <€ 4).

Due to the inequivalency of the sublattices, we decid-
ed to close the set of equations with an average alloy,
whose on-site potential is given by the virtual-crystal ap-
proximation. The VCA is the crudest approximation to
the alloy potential which simply scales the position of
the energy band linearly with the concentration of each
species. This is a good approximation only if the
difference 8 is small compared with the constituent
bandwidths. A better choice in the boundary conditions
may result in a more evident gap and may give rise to
additional localized states.!*

As a general conclusion one might say that the main
features of the electronic spectra in a Penrose lattice can
be obtained by means of the CBLM. However, in this
case the size of the cluster necessary to obtain equivalent
results to the corresponding ones in crystalline lattices is
much larger. Due to the simplicity of the method, it
might be especially useful for the case of an alloy where
additional localized states might appear due to the sub-
stitutional disorder.
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