ON THE VAN DER WAALS ENERGY OF TWO HALF-SPACES AT SMALL SEPARATIONS

R.G. BARRERA* and E. GERLACH

I. Physikalisches Institut der Rheinisch-Westfälischen Technischen Hochschule, Aachen, Germany

Received 20 August 1973
Revised manuscript received 28 January 1974

It is shown that the introduction of a cut-off wavenumber corresponding to electron–hole excitations leads to a 10% reduction of the Lifshitz van der Waals attraction of low density metallic half-spaces at small separations.

In order to explain experiments on the adhesion of solid particles in terms of van der Waals forces, the Lifshitz formula [1] has been assumed to be valid for extremely small separations [2] (about 4 Å). In this range, however, the lattice structure and the overlap of the electrons are expected to become important. The influence of these effects, in a most qualitative way, can be incorporated into the theory of the non-retarded van der Waals forces, as derived, e.g., by van Kampen et al. [3] by introducing a cut-off wavenumber K_c into the surface excitation spectrum. For wavenumbers greater than K_c, the surface excitations decay into electron–hole pairs. As is shown below the cut-off leads to a modification of the $1/d^2$ law at small separations. This indicates that in this range phenomena different from surface excitations, presumably direct overlap [4], are of non-negligible influence. (Effects of the lattice structure and size effects [5] are not considered in the present paper.) The quantity K_c, unfortunately, is not as well defined as for bulk plasmons, except for the case $K a \ll 1$, where K is the surface plasmon wavenumber and a is the thickness of the surface profile [6].

Now, following the simple treatment of van Kampen [3, 7] we obtain for the van der Waals energy U of two metallic half-spaces separated by a gap of width d

$$U(d) = \frac{\hbar \omega_p}{4\pi\sqrt{2}d^2} \sum_{K} \left[\omega^+(K) - 2^{-1/2} \omega_p \right] + \left[\omega^-(K) - 2^{-1/2} \omega_p \right],$$

(1)

with

$$\omega^\pm = 2^{-1/2} \omega_p \left(1 \pm e^{-K a} \right)^{1/2},$$

(2)

where ω_p is the plasma frequency.

Insertion of (2) into (1) leads to

$$U(d) = \frac{\hbar \omega_p}{4\pi\sqrt{2}d^2} K_c d \int_0^d dx \left[2 - (1 + e^{-x})^{1/2} - (1 - e^{-x})^{1/2} \right],$$

(3)

which has the following limits

$$U(d \gg K_c^{-1}) = \frac{\hbar \omega_p}{64\pi\sqrt{2}d^2} \left[1.1 - (1 + 2K_c d) e^{-2K_c d} \right]$$

(4)

$$U(d \ll K_c^{-1}) = \frac{\hbar \omega_p}{4\pi\sqrt{2}} \left[\frac{1}{2} K_c^2 (2 - \sqrt{2}) - \frac{3}{2} K_c^{1/2} d^{1/2} \right].$$

(5)

Eq. (4) is obtained by expanding the integrand of (3) with respect to e^{-x}. The error appearing for small values of x is approximately compensated by the fac-

* Present address: Instituto de Física, Ciudad Universitaria, Mexico 20 D.F., Mexico.
tor x in front of the bracket.

For K_c we suggest an expression which has been used in the calculation of surface energies [8]

$$K_c = \frac{\omega_p}{v_F \sqrt{a_B^2}} = \left(\frac{2}{3\pi^2} \right)^{1/6} \frac{1}{a_B \sqrt{r_s}},$$

(6)

where v_F is the Fermi velocity, a_B is Bohr’s radius and r_s is defined by $n^{-1} = 4\pi (a_B r_s)^3/3$. Using this value for K_c in eq. (4) leads to a reduction of Lifshitz’s results [1] which was derived for $K_c \to \infty$. In the range of separations d studied in ref. [2] this reduction is about 10% for low density metals ($r_s \approx 6$) and about 1% for high density metals ($r_s \approx 2$).

The limit (5) has little physical relevance for our problem. Nevertheless, it shows that the introduction of a finite K_c leads to a value of $U(d)$ that remains finite for $d \to 0$ [8].

One of us (R.G. Barrera) would like to acknowledge the financial support of the Instituto Mexicano del Petroleo (Mexico) and the kind hospitality of Professor H. Thomas at the Institut für Theoretische Physik der Universität Frankfurt where part of this work was done.

References