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ABSTRACT: A general expression for gloss within the scalar Kirchhoff ’s theory is de-
rived in terms of the detector collecting angle, and two statistical parameters that
characterize the surface roughness. Analytical expressions for gloss are derived for an
exponential and a Gaussian correlation function, and numerical results for these and
other quasi-exponential correlation functions are presented. It is shown that the inco-
herent contribution to gloss is significant in common polymeric surfaces. The latter
implies that surface height correlations cannot be neglected in the evaluation of gloss.
It is also shown that for a correlation function with a single characteristic length, gloss
scales with the correlation length Lc in the same way as with the detector collecting
angle. This fact can be used to determine Lc with a glossmeter, and an experimental
method to achieve this is proposed. q 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym
Phys 36: 1321–1334, 1998
Keywords: gloss; rough surface; specular reflectance; correlation length

INTRODUCTION tion of the fillers, as well as the viscosity and index
of refraction of the matrix, together with process
variables such as melt and mold temperatures,Gloss is an appearance attribute highly de-

manded by many applications such as paints and injection speed, etc., define the surface properties
plastic goods in houseware and car industry. of the sample and, therefore, its reflectance. Ex-
From a physical point of view gloss is related to amples like this can be also found in other areas
the amount of light scattered around the specular such as the paint industry, where one has a highly
direction. Usually it is associated with surface concentrated suspension of latex particles (which
roughness because in many cases the bulk contri- finally filmify) mixed with pigments and other fil-
bution is small compared to the one coming from lers. Again, the surface tension, the index of re-
the surface.1,2 In this article we shall assume that fraction of the latex film and the fillers, the viscos-
this is the case. ity of the mixture, the particle size of the fillers,

Gloss depends not only on the material proper- etc., will be some of the relevant material vari-
ties but also on process variables. For example, ables on which the surface properties depend.
in the plastics industry, most commercial plastics However, equally important in the formation of
are reinforced with some kind of fillers. Under surface roughness are, for example, the method
elongational flow, inherent in all plastic manufac- used in spreading the film on the substrate, to-
turing processes, these fillers migrate to the sur- gether with the external variables involved in the
face affecting its roughness.3–7 The size distribu- filmification process. To develop a product with
tion, mechanical properties, and index of refrac- controlled gloss one must be able to relate the

material and process variables to gloss, as mea-
sured by standard testing methods.

Correspondence to: R. Alexander-Katz
There are two kinds of gloss measurements—

Journal of Polymer Science: Part B: Polymer Physics, Vol. 36, 1321–1334 (1998)
q 1998 John Wiley & Sons, Inc. CCC 0887-6266/98/081321-14 one, and probably the more commonly used, is a
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1322 ALEXANDER-KATZ AND BARRERA

measure of the specular gloss, that is, the specular sion of the relative reflectance. However, as we
shall show below, his expression corresponds toreflectance of a specimen relative to that of a refer-

ence standard (ASTM D 523-89).8 The other kind the present results in the limit of weak scattering
surfaces.measures the reflection haze and the distinctness-

of-image gloss in addition to specular gloss One of the important inputs in the theory by
Beckmann is the surface correlation function of(ASTM E430-91).9 Distinctness-of-image gloss is

the attribute that characterizes the sharpness of heights. However, in spite of the growing interest
in Atomic Force Microscopy studies of polymerimages of objects produced by reflection from a

given surface. It is related to the relative scatter- surfaces,14 we have not found a systematic study
of correlation functions of polymeric surfaces.ing (relative to a standard) at an angle close to

the specular direction ({0.37 ) . On the other hand, Most authors characterize only the RMS mean
height. Even in the applied polymer literature onreflection haze is given by the ratio of the scatter-

ing intensity at an angle off the specular direction optical properties one finds publications15 that re-
late gloss only to the RMS average height (coher-to that of a reference surface. If this angle is {27

({57 ) , one refers to narrow-angle (wide-angle) ent reflectance). In this article we will show that
the surface correlation will have a significant ef-haze. In specular gloss one measures a mixture

of coherent and diffuse reflected light, as defined fect on gloss.
Within the few articles that characterize theby the receiving aperture, while reflected haze

and distinctness-of-image gloss are a measure of correlation function of polymer surfaces is that of
Méndez et al.1 for the case of poly(acrylonitrile–the sharpness of the angular pattern of diffuse

scattering intensity around the specular angle. butadiene–styrene) (ABS), a plastic commonly
used in the automotive and electrical–housewareThe latter test is addressed particularly to high-

gloss samples. However, many applications in the industry. There it has been shown that, for differ-
ent processing conditions, a simple Kirchhoff sca-plastics and paint industries lie in an intermedi-

ate region between weak and strong scattering lar theory with a Gaussian height distribution
and an exponential height correlation function,surfaces, and specular gloss is commonly used as

a monitoring measure of appearance. For these accurately describes the angle-resolved scattering
in the vicinity of the specular angle. Another ex-reason in this article deals with specular gloss,

although the results here derived could be ex- ample, now in the context of the paper industry,
has been given by Lettieri et al.,2 where a simpletended to reflection haze and the distinctness-of-

image gloss. Kirchhoff scalar theory with a Gaussian height
distribution together with a quasi exponentialBecause gloss depends on material and process

variables via the effect that these have on surface correlation function, gave an adequate description
of the angle-resolved light scattering by glossy pa-roughness, we must first establish the relation

between surface roughness and gloss. The latter per. In a more general context Bennett and Matts-
son16 have pointed out that in a wide variety ofis the main purpose of this article.

The theoretical basis to understand the proper- surfaces, the surface height correlation function
is, in general, closer to an exponential one. Thisties of the far-field of light scattered from a rough

surface, in terms of the statistical properties of implies that a simple scalar Kirchhoff theory with
a quasi-exponential correlation function seems tothe surface, was established long ago in the work

of Davies10 and Beckmann.11 Nevertheless, in be a reasonable model in explaining the surface
scattering features of many complex systems en-most approaches,12 including Beckmann’s, the

normalization of the relative reflectance corre- countered in industrial applications. We shall
limit here the discussion to statistical-type sur-sponds to a point detector. This leads to expres-

sions for gloss that cannot be compared to mea- faces, that is, surfaces where roughness is statisti-
cal in nature or at least is dominant over anysurements made with standard glossmeters. Al-

though inherent to the design of a glossmeter is other systematic source of roughness.
In this article we derive a general expressionthe size of the detector apertures, we have not

found in the literature explicit expressions for for gloss, within the scalar Kirchhoff ’s theory
with a Gaussian height distribution and showgloss that take into consideration the size of the

detector, except in the early work of Porteus13 on that, in the visible frequency range, the contribu-
tion of the diffuse beam is significant. Our expres-the reflectance at normal incidence for Gaussian-

correlated surfaces. In this work, the detector– sion takes into account the size of the aperture
of the detecting system. For correlation functionsacceptance angle appears explicitly in the expres-
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SURFACE CORRELATION EFFECTS ON GLOSS 1323

with a single correlation length, Lc , we show that received by the same detector-collecting system,
at the specular angle u1 ; that is:gloss, at a given angle, depends only on two pa-

rameters: (s /l )cos u1 and (Lc /l ) (du )D . Here, s is
the RMS average height, l is the wavelength of

PN Å *
V1/VD

V1
S dPo

dV D dV, (2)light in air, (du )D is the detector collecting half-
angle, and u1 is the angle of incidence relative to
the surface normal. We give explicit expressions

where dPo /dV is the power scattered per solidfor a Gaussian and an exponential surface correla-
angle by a smooth surface.tion function. The Gaussian correlation allows us

To calculate dP /dV we use Kirchhoff scalarto compare our results with those of Porteus,13

theory.11,19 For that, we divide the scattered fieldand it provides a model for a quasi single-length
into its coherent and incoherent components.scale type of surface roughness. The exponential,
Here we shall understand by coherent, the scat-on the other hand, corresponds more closely to
tered-field component that preserves the phasestatistical real surfaces as pointed out above. The
relationships of the incident field. In the litera-power spectrum of an exponential correlation
ture in this field,11,19 it is common to associate thefunction has a longer tail, indicating the presence
origin of incoherence in the scattered field to theof higher spatial-frequencies components and,
random phase changes induced by the surfacetherefore, implying a multiple-scale length type
roughness itself rather than by the coherenceof surface. In any case, the results with an expo-
properties of the light source employed. There-nential correlation function are also compared
fore, it is usual to identify the specular field withwith those obtained with modified exponentials,
the coherent component of the scattered field be-as proposed by Lettieri et al.,2 and with K-correla-
cause for glossy to moderately glossy surfaces thistion functions such as suggested by Hoenders et
component is dominant over the diffuse light scat-al.17 The latter represent a family of correlation
tered at the specular direction. The diffuse inten-functions that encompass Gaussians, exponen-
sity is, therefore, identified with the incoherenttials, modified fractal-type and other nonfractal-
component of the scattered light, and in this arti-type surfaces.
cle we shall use these indistinctly.Finally, using our result that variations on Lc /

Standard glossmeters use large receiving fieldl are equivalent to changes in (du )D , we propose
apertures (É 2–47 ) and illuminate a large samplea method to determine the correlation length via
area (É 1–2 cm2.) . Their light source is an incan-specular gloss measurements. This will be com-
descent lamp that can be partially coherent byplementary to the classical Bennett–Porteus
introducing a spectral filter at the source exit. Formethod of determining s from coherent re-
a large receiving field aperture, the diffuse inten-flectance measurements.18

sity measured using a coherent source or a par-
tially coherent one (centered at the same wave-
length) will be the same, as long as the size of theKIRCHHOFF SCALAR THEORY OF GLOSS
speckles is small compared with the aperture’s
size, because the receiving optical system is aver-As stated in the introduction, glossmeters that
aging over a large number of speckles. For thecomply to the ASTM Standard D523-898 measure
illuminated sample area indicated above, thethe specular reflectance of a rough surface rela-
speckles will be small. Under this condition, itstive to that of a smooth standard surface at a
seems reasonable in our discussion to identify thegiven angle. The relative specular reflectance
diffuse field with the incoherent component, inde-around a solid angle V1 is defined as:
pendently of the source used, as is common in this
field.

r(V ) Å 1
PN

*
V1/VD

V1
S dP

dVD dV, (1) The coherent field amplitude »E (c )
s … is given by

Ogilvy19 as:

where dP /dV is the power scattered by the sur- »E (c )
s … Å

ÉrÉ
ÉroÉ

x(kC )Esmooth , (3)
face per solid angle, VD is the solid angle defined
by the receiving optics of the detector, and the
subscript 1 refers to the specular direction. PN is where Esmooth is the amplitude of the field scat-

tered by a smooth surface, and k is the magnitudethe total power scattered by a smooth surface,
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1324 ALEXANDER-KATZ AND BARRERA

Figure 1. Scattering geometry for plane wave incidence.

of the wave vector of the incident beam. Here ÉrÉ2
Éx(kC )É2 Å exp(0g ) , (7)

is the average reflectance in the specular direction
of the rough surface, ÉroÉ

2 is the reflectance of where
the smooth surface, as given by the usual Fresnel
formulas. x is the Fourier transform of the height g Å k2s2(cos u1 / cos u2)2 , (8)
probability density, p (h ) :

and s is the surface RMS height.
x(s ) Å *

`

0`

p (h )exp(ish) dh , (4) The power scattered incoherently per solid
angle, in cgs units, is given by19:

and s is the corresponding variable in Fourier
space that represents the inverse of a surface S dP

dVD
(d )

Å S co

4pDÉrÉ2 k2F2

2p
AM‘‘wavelength’’ and, therefore, x provides a mea-

sure of the phase modulation of a wave at a rough
surface. C is defined as:

1 *
`

0
Jo (kR

√
A2 / B2)[x2(kC , 0kC , R )

C Å 0 (cos u1 / cos u2) , (5)
0 Éx(kC )É2]R dR , (9)

Here, u1 and u2 are the incident and scattering
where AM is the area illuminated, co is the velocityangles relative to the surface normal, respec-
of light in vacuum, Jo is a Bessel function of zerotively, as shown in Figure 1.
order, and A , B , and F are given by:Therefore, the coherent contribution to the

power scattered per solid angle is:
A Å sin u1 0 sin u2 cos u3 (10)

S dP
dVD

(c )

Å Éx(kC )É2 ÉrÉ2

ÉroÉ
2 H dPo

dV J . (6) B Å 0 sin u2 sin u3 (11)

F Å (1 / cos u1 cos u2 0 sin u1 sin u2 cos u3)
(cos u1 / cos u2)

,
For Gaussian height statistics, x(kC ) is given

by: (12)

9706003
/ 8Q4F$$6003 04-02-98 15:49:49 polpa W: Poly Physics



SURFACE CORRELATION EFFECTS ON GLOSS 1325

Here, u3 is the angle of the scattered field rela- where AM Å 4XY and sinc x Å sin x /x .
In most treatments12 since Beckmann’s trea-tive to the plane of incidence as shown in Figure 1.

x2 is the two-dimensional characteristic function tise,11 the total power scattered by the smooth
surface is taken as that coming only at the specu-defined as:
lar angle, that is u3 Å 0 and u2 Å u1 . In that case,
the sinc functions are equal to unity and PN willx2 (s1 , s2 , R )
be given by:

Å *
`

0
*

`

0
p (h1 , h2 , R )exp[ i (s1h1

Ps
N Å S co

4pDÉroÉ
2S 1

l2DA2
M cos2 u1VD . (18)

/ s2h2)]dh1dh2 , (13)

where p (h1 , h2 , R )dh1dh2 is the probability that The superscript ‘‘s ’’ indicates that this normal-
two points separated by a vector R have heights ization is equivalent to taking a very small detec-
between h1 / dh1 and h2 / dh2 , respectively, and tor collecting angle where VD ! l2 /AM and, there-
s1 and s2 are the corresponding variables in Fou- fore, the detector picks up only the very central
rier space. part of the zero-order diffraction peak. However,

If we assume that the surface is both isotropic because in common glossmeters VD @ l2 /AM , eq.
and stationary and with Gaussian height statis- (2) implies an integration of the specularly scat-
tics, then: tered diffraction pattern, leading to the following

normalization power:
x2(kC , 0kC , R ) Å exp(0 {g[1 0 C (R ) ] } ) , (14)

P ,
N Å S co

4pDÉroÉ
2AM cos u1D (VD ) , (19)

where C (R ) is the surface correlation function
defined as,

where D (VD ) is a function that tells us how much
of the diffraction pattern was collected by the de-C (R ) Å »h (r )h (r / R ) …s

s2 . (15)
tector. The extra superscript , states explicitly
that the case of a large detector collecting angle
is being considered. If VD @ l2 /AM , D (VD ) willHere h (r ) is the height of the surface at r rela-
be always very close to unity. The details of thistive to a reference nominal surface defined such
normalization procedure are given in Appendix 1.that »h …sÅ 0, where »rrr…s denotes spatial averag-
We shall use P ,

N as normalization power becauseing. Due to stationarity and the isotropic charac-
it corresponds to the reference reflected powerter of the surface, C (R ) will depend only on the
commonly used in specular gloss determinationabsolute distance R between any two points at
procedures. Notice that Ps

N scales as A2
M cos2u1VDthe surface.

rather than AM cos u1 as in P ,
N , and consequently,Under these assumptions eq. (9) can be written

all our results will differ from Beckmann’s due toas:
the normalization chosen here.

Therefore, the coherent r (c )
s and the incoherentS dP

dVD
(d )

Å S co

4pDÉrÉ2 k2F2

2p
AM exp(0g ) r (d )

s contributions to the specular relative re-
flectance in a glossmeter are given by

1 *
`

0
Jo (kR

√
A2 / B2)[exp(gC (R ) ) 0 1]RdR .

r (c )
s Å ÉrÉ2

ÉroÉ
2 Éx(kC )É2 , (20)

(16)
and

For the smooth surface, the power scattered per
solid angle for a rectangular illuminated section of

r (d )
s Å ÉrÉ2

ÉroÉ
2

k2

2p cos u1sides 2X and 2Y is given by:

1 *
V1/VD

V1
Hexp(0g )F2 *

`

0
Jo (kR

√
A2 / B2)dPo

dV
Å S co

4pDS k2

16p2DA2
MÉroÉ

2(cos u1

1 [exp(gC (R ) ) 0 1]RdRJ dV, (21)
/ cos u2)2 sinc2(kAX )sinc2(kBY ), (17)
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1326 ALEXANDER-KATZ AND BARRERA

respectively. Gloss, G, can then be written as: Introducing these approximations into eq. (21)
and making the following change of variables:

G Å r (c )
s / r (d )

s . (22)

a Å kLc cos u1du, (26)

andCORRELATION LENGTH AND COLLECTING
DETECTOR ANGLE EFFECTS ON GLOSS b Å kLc sin u1u3 , (27)

In this section we shall develop expressions for
the expression for r (d )

s can be written as:gloss for correlation functions that are of the form
C (R /Lc ) , that is, with a single characteristic
length. Lc is usually called the correlation length.

r (d )
s Å 2

p

ÉrÉ2

pÉroÉ
2 exp(0gs )In particular, we shall derive explicit expressions

for an exponential and a Gaussian surface correla-
tion function. 1 *

yD

0
*

yDcosu1

0
H*

`

0
Jo (

√
a2 / b2x )

Because the angular range of integration is
small, we can introduce the following approxima-
tions in eq. (21): 1 [exp(gsC (x ) ) 0 1]xdxJ dadb, (28)

I) The factor F2 exp(0g ) can be written to first
order in du Å u2 0 u1 as:

whereF2 exp(0g ) Å exp(0gs )cos2 u1

1 {1/ (gs 0 1)tan u1 du /rrr} , (23)
yD Å kLcÉ(du )DÉ.

where
In this expression, we have taken into account

that the detector collecting solid angle is defined
gs Å 16p2 s2

l2 cos2u1 . (24) entirely by the collecting optics and, therefore, VD

should be independent of the specular angle. We
have taken the integration limits over du and u3The angle u3 will be of the same order as du
such that this is satisfied. That is, the integra-(except at normal incidence), and it will contrib-
tion range of du is 0 ° du ° (du )D , where (du )Dute only to second order in eq. (23). We observe
is the detector collecting half-angle, while thethat for reasonably rough surfaces (s É 0.1 mm),
corresponding integration limits for u3 are 0and typical values for l, u1 , and collecting aper-
° u3 ° (du )D / sin u1 . This means that the collect-tures, say, l É 0.5 mm, u1 Å 207 and dumax Å p /
ing optics aperture is approximated by a spheri-180, respectively, the maximum error in F2

cal square sector.exp(0g ) , to zeroth order, is less than 3%. There-
We can observe that for a given angle of inci-fore, the error in the full angular integral of eq.

dence the incoherent contribution to gloss de-(21), by the substitution of F2 exp(0g ) to zeroth
pends only on two parameters, gs and yD . Thisorder in du, will be smaller than 3%. Substitution
implies that r (d )

s varies with Lc in the same wayof gC (R ) by gsC (R ) will give an error similar to
as with the detector collecting angle. Equationthe one just discussed.
(28) is valid for all correlation functions with aII) The argument of the Bessel function can
single characteristic length.also be expanded into powers of du and u3 , and

To find an explicit expression for gloss in termscan be approximated by:
of gs and yD , we must know the functional form of
the correlation function. In what follows we shallkRÉ

√
A2 / B2

É É kR
√
(du )2 cos2 u1 / u2

3 sin2 u1 .
discuss the analytical solutions for two types

(25) of correlation functions, an exponential and a
Gaussian one. Substituting an exponential corre-
lation function C (R ) Å exp(0R /Lc ) in eq. (28)III) To the same order in du, the element of

solid angle can be approximated as dV É sin u1 and performing a series expansion of the exponen-
tial inside the integral, we get:du3d (du ) .
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SURFACE CORRELATION EFFECTS ON GLOSS 1327

For a Gaussian correlation function C (R )
r (d )

s Å
2
p

ÉrÉ2

ÉroÉ
2 exp(0gs ) Å exp(0 [R /Lc ]2) we follow the same steps as in

the previous case, and by using
1 ∑

`

nÅ1
*

yD

0
*

yDcosu1

0
H*

`

0
Jo (

√
a2 / b2x )

*
`

0
Jo (yx )exp(0nx2)x dx

1 F gn
s exp(0nx )

n ! GxdxJ dadb. (29)
Å 1

2n
expS0 y2

4n D , (34)

Integrating the above expression and using:
we find

*
`

0
Jo (yx )exp(0nx )x dx Å n

(n2 / y2)3/2 , (30)

r (d )
s (Gauss) Å

ÉrÉ2

ÉroÉ
2 exp(0gs )

we arrive at:

1 ∑
`

nÅ1

gn
s

n !
erf S yD cos u1

2
√
n

Derf S yD

2
√
n
D , (35)

r (d )
s (exp) Å

2
p

ÉrÉ2

ÉroÉ
2 exp(0gs ) ∑

`

nÅ1
F gn

s

n !G
where erf(x ) is the error function. We have in-1 arctanH y2

D cos u1

n
√
n2 / y2

D (1 / cos2 u1)
J . (31) cluded an additional subscript (Gauss) to indicate

explicitly that this expression is only valid in the
case of a Gaussian correlation function.

We have included an additional subscript (exp) Adding the coherent contribution to the rela-
to indicate explicitly that this expression is only tive specular reflectance, we get that gloss is given
valid for the case of an exponential correlation by:
function. If we add to eq. (31), the coherent specu-
lar relative reflectance, we finally get a simple
expression for gloss: G (Gauss) Å

ÉrÉ2

ÉroÉ
2 exp(0gs )H1 / ∑

`

nÅ1

gn
s

n !

G (exp) Å
ÉrÉ2

ÉroÉ
2 exp(0gs )H1 / 2

p
∑
`

nÅ1
F gn

s

n !G 1 erf S yD cos u1

2
√
n

Derf S yD

2
√
n
DJ . (36)

1 arctanH y2
D cos u1

n
√
n2 / y2

D (1 / cos2 u1)
JJ . (32)

Analogously, at normal incidence this expres-
sion is not valid. Again, calculating this case sepa-

This formula applies for all angles, within the rately and following the same steps as above we
range of validity of Kirchhoff ’s approximation, get,
except in the neighborhood of normal incidence,
because in this case u3 is not small and will vary

G (Gauss) (u1 Å 0) Å ÉrÉ2

ÉroÉ
2 exp(0gs )between 0 and 2p. Therefore, the normal-inci-

dence case has to be treated separately. How-
ever, in this case, u1 Å 0 and b Å 0; thus, the 1 H1 0 ∑

`

nÅ1

gn
s

n ! S1 0 expS0 y2
D

4n DD J . (37)
integrand of eq. (29) will only depend on du. Ad-
ditionally, in this limit, dV can be approximated
by dV É dud (du )du3 . Following the same steps

This expression and the one given by Porteus13
as above we get:

only coincide to first order in gs , that is, in the
limit of weak scattering surfaces.

G (exp) (u1 Å 0) Å ÉrÉ2

ÉroÉ
2 exp(0gs )Hexp(gs ) To verify the accuracy of our approximations,

we calculated r (d )
s , for an exponential correlation

function, by direct numerical integration of eq.
(21) and compared the results with the corre-0 ∑

`

nÅ1

gn
s

(n 0 1)!(n2 / y2
D )1/2J . (33)

sponding values obtained by using eq. (31). In the
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1328 ALEXANDER-KATZ AND BARRERA

Figure 4. Correlation length effects on the diffuseFigure 2. Gloss vs. yD at an incidence angle of 207 for
scattering intensity (ID ) for an exponential correlationan exponential correlation function for different values
function and Gaussian distribution of heights. s /lof s /l. (du )D Å 17.
Å 0.4, u1 Å 207, u3 Å 0.

interval of s /l and yD where gloss is sensitive to
yD (0.02° s /l° 0.2 and 0.6° yD ° 6), the maxi- values of s /l, for both an exponential and a
mum difference found was less than 1.5%. In con- Gaussian correlation functions, respectively. As
clusion, the series representation for gloss given expected, for very small values of s /l, gloss
in eqs. (32), (33), (36), and (37) provide a simple should be highly insensitive to yD , because the
way to calculate gloss for a Gaussian and an expo- coherent component will be dominant and the in-
nential correlation function and which can be ac- coherent contribution will represent a small per-
complished by hand calculators. centage of the total specularly reflected light. In

this limit, eqs. (32) and (36) reduce to the Bennett
and Porteus18 expression given by

RESULTS AND DISCUSSION

In this section we discuss the consequences of the G É ÉrÉ2

ÉroÉ
2 exp(0gs ) . (38)

expressions for gloss derived above. In Figures 2
and 3 we plot gloss as a function of yD , for several

In Figure 2 we also observe that for very large
s /l, again gloss is insensitive to changes in yD .
However, the reason for this is different from the
previous case, because in this limit the incoherent
contribution to the relative reflectance is fully
dominant. To understand this, we show in Figure
4 the scattering pattern of the incoherent field for
an exponential correlation function and a large s /
l (gs É 22). One can see that the light scattered
diffusely is almost angle independent within the
angular interval defined by the detector receiving
system. In Figure 5 we show two mathematically
generated one-dimensional random surface pro-
files with an exponential correlation function and
a Gaussian distribution of heights, for the same
parameters used in Figure 4. All random surfaces
profiles were generated using the spectral
method.20 Because Lc roughly corresponds to theFigure 3. Gloss vs. yD at an incidence angle of 207 for
average lateral size of the surface’s protuber-a Gaussian correlation function for different values of

s /l. (du )D Å 17. ances, the surface profile with Lc /l Å 30 and s /l
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K (gs )exp r
gs@1

exp(gs )
g2

s

and

K (gs )Gauss r
gs@1

exp(gs )
2gs

Therefore, in this limit the expression for gloss
will be reduced to:

G (exp) à
ÉrÉ2

ÉroÉ
2

y2
D

2g2
s

cos u1S VD

p(du )2
D
D

(gs @ 1), (42)
Figure 5. Mathematically generated random surface
profiles for a Gaussian distribution of heights and an and
exponential height correlation function for s /l Å 0.4.

G (Gauss) à
ÉrÉ2

ÉroÉ
2

y2
D

4gs
cos u1S VD

p(du )2
D
D .

Å 0.4 looks less ‘‘wiggly’’ than for Lc /l Å 6. As one
can see from Figure 5, the average slope (É s /Lc )
of the protuberances is large enough to give rise (gs @ 1). (43)
to an almost isotropic diffuse field, as shown in
Figure 4. In this case, the integral within brackets Although for gs @ 1, G É (yD )2 , the proportion-
in eq. (21) is independent of V, and the angular ality factor is very small, and this is what limits
integration is done readily. This leads to a simple the sensitivity of gloss on yD , we will have to reach
approximation for large gs , namely: unrealistic high values of yD to start detecting sig-

nificant changes in gloss. The values of gs for at-
taining these asymptotic expressions will depend

G à ÉrÉ2

ÉroÉ
2

y2
D

2
cos u1S VD

p(du )2
D
Dexp(0gs ) on the correlation function; for instance, in the

exponential case, this limit will be reached sooner
because it tends to give flatter scattering patterns1 K (gs ) (gs @ 1), (39)
in the specular interval than those generated by
a Gaussian correlation function. However, this

where K (gs ) is given by: limit is not the most interesting one because the
surface is fully matte, whatever small changes we
might register by varying yD within experimentalK (gs )exp Å *

`

0
[exp(gs exp(0x ) ) 0 1]x dx , (40)

limits.
In many applications, surfaces are neither ex-

tremely glossy nor fully matte; they are fairlyfor an exponential correlation function, and by:
glossy with moderate values of gs (É 1). It is in
this intermediate region where gloss has theK (gs )Gauss
strongest sensitivity to yD . To illustrate the differ-
ence in roughness in this region compared withÅ *

`

0
[exp(gs exp(0x2)) 0 1]x dx , (41)

the surface profiles shown in Figure 5, we present
in Figure 6 two mathematically generated one-

for a Gaussian correlation function. The factor dimensional random surface profiles with a
Gaussian distribution of heights and an exponen-VD / (p(du )2

D ) will be close to unity, depending on
the geometry of the collecting aperture. For a cir- tial surface correlation function, for s /l Å 0.114

and two different values of Lc /l. As it is evidentcular aperture its value is unity.
Because eq. (39) is only valid in the case gs @ 1, from Figure 6 the surfaces are much smoother

than the one shown previously. Again, we see inwe can replace eqs. (40) and (41) by its asymp-
totic limits, that is: this figure that the average slope of the surface
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Figure 6. Mathematically generated random surface Figure 8. Correlation length effects on the diffuse
profiles for a Gaussian distribution of heights and an scattering intensity (ID ) for an exponential correlation
exponential height correlation function for s /lÅ 0.114. function and Gaussian distribution of heights. s /l

Å 0.2, u1 Å 207, u3 Å 0.

protuberances decreases as the correlation length
increases, and one would expect that the diffuse ures 9 and 10, where we plot the incoherent con-
field will be more concentrated around the specu- tribution to gloss, Gi , and gloss as a function of
lar angle. This, in fact, is the case, as shown in s /l for different values of Lc /l, for both an expo-
Figure 7 where the diffuse intensity is plotted as nential and a Gaussian correlation functions, re-
a function of u2 , for the same values of s /l and spectively. As one can see, the incoherent fraction
Lc /l as in Figure 6. Figure 8 shows the same cor- of gloss can be quite substantial for reasonably
relation effects on the diffuse scattering pattern glossy surfaces (GÉ 75%). For example, in Figure
for s /l Å 0.2. Therefore, we see that for a moder- 9 for a moderate value of s /l Å 0.1, at u1 Å 0207
ate value of s /l, as we increase Lc /l, the diffuse with du Å 0.017 rad and Lc /l Å 40, the incoherent
scattering tends to concentrate more within the fraction will be 66.4%. Even for very glossy sur-
detector’s acceptance angle, and in consequence, faces (G É 90%), as long as Lc /l is large, Figure
gloss is increased by the contribution of the inco- 9 shows that the incoherent contribution can be
herently scattered field. This is illustrated in Fig- quite important; for instance, for s /lÅ 0.06, leav-

ing the other parameters the same, gloss is 89.9%,

Figure 7. Correlation length effects on the diffuse
scattering intensity (ID ) for an exponential correlation Figure 9. Gloss and the incoherent contribution to

gloss vs. s /l for two different Lc /ls for an exponentialfunction and Gaussian distribution of heights. s /l
Å 0.114, u1 Å 207, u3 Å 0. correlation function. u1 Å 0207 and (du )D Å 17.
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SURFACE CORRELATION EFFECTS ON GLOSS 1331

nent between 1 and 2. Here, we shall calculate
gloss for a Å 1.15 and 1.35, which were the values
that best fitted their light-scattering experiments.
These correspond to positive deviations from an
exponential, that is, that the slope at R Å 0 is
lower than that of an exponential.

The other is the model discussed by Hoenders
et al.17 of a fluctuating facet-scattering surface.
The family of correlation functions proposed by
these authors is of the form:

Cn( R ) Å (pnR /Lc )n

2n01G(n )
Kn( pnR /Lc )

where Kn is the modified Bessel function of order
Figure 10. Gloss and the incoherent contribution to n, G is the Gamma function and pn is a scalar
gloss vs. s /l for two different Lc /l’s for a Gaussian whose value is such that for R Å Lc , Cn( Lc ) Å e01 .
correlation function. u1 Å 0207 and (du )D Å 17. For n Å 1

2 the correlation function corresponds ex-
actly to an exponential while in the limit n r ` ,
this tends to a Gaussian correlation function. To

32.7% of which is incoherent in origin. For a represent a quasi-exponential with this family of
smaller correlation length this contribution will functions, we will choose n Å 0.7 and 0.3 as exam-
be reduced because the proportion of the diffusely ples of positive and negative deviations from an
scattered beam that reaches the detector will be exponential. Figure 11 shows the correlation func-
smaller. As an example of the latter, for Lc /l Å 10 tions used in our calculations and how they com-
and s /l Å 0.1 with the same values of the other pare with an exponential. Because the correlation
parameters as above, the diffuse contribution to function for n Å 0.7 almost coincides with the
gloss represents É 40.2% of the total, which is modified exponential for a Å 1.15, we shall only
still quite large. The proportion of the incoherent show the results for one of these, the K-correlation
contribution can be enhanced by increasing the function with n Å 0.7. Because, in the case of
receiving aperture, because the detector will reg- quasi-exponentials considered here, it is not possi-
ister a larger portion of the diffuse field. In conclu- ble to derive a simple series representation for
sion, for moderately glossy surfaces, gloss, as usu- gloss, the calculations for these were done by per-
ally measured, can be strongly incoherent in na- forming a numerical integration of the triple inte-
ture. gral that appears in eq. (28). The latter was done

From the introductory discussion it is clear
that, in many applications, an exponential corre-
lation function will be a close guess for the real
correlation function. The two examples given, of
a molded filled plastic and a coated paper, corre-
spond to two extreme cases—one highly glossy
and the other fairly matte—where the surface to-
pography has a completely different origin. In
both cases the correlation function that best fitted
the experimental angle-resolved light scattering
was an exponential or close to an exponential, and
the correlation length was not larger than 15 mm.
To study the effects on gloss produced by devia-
tions from an exponential correlation function, we
shall present numerical results of gloss, as a func-
tion of yD , for two models of quasi-exponential cor-
relation functions. The first one, given by Lettieri
et al.,2 consists on modified exponentials of the Figure 11. Quasi-exponential correlation functions

compared with an exponential and a Gaussian.form C (R ) Å exp(0ÉR /LcÉ
a) where a is an expo-
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scales as the correlation length can be used to
determine Lc , for moderately glossy surfaces, by
a very simple method, which can be incorporated
in commercial glossmeters. There are two situa-
tions—one when we know the surface correlation
function, and the other when this is not the case.
In the first case, if we know s, using gloss-yD plots,
such as the ones shown in Figures 2 and 3, we
first look for the yD that gives the same value
of the experimentally measured gloss. From this
value, (yD )T , and the experimental detector col-
lecting half-angle, [(du )D ]E , we can calculate Lc

as:

Lc Å
(yD )T .

k ( (du )D )E
. (44)Figure 12. Gloss vs. YD at an incidence angle of 207

for various correlation functions for two values of s /l.
(du )D Å 17.

In practice, s can be measured independently,
for instance, incorporating an extra infrared light
source at a fixed angle in the design of the gloss-by means of Mathematica21 using a multidimen-
meter and using the classical method by Bennettsional method and keeping an absolute accuracy
an Porteus.18

of the multiple-integration algorithm of at least
In the case that we do not know the heightthree significant figures. In Figure 12 we plot the

correlation function of the surface, for a measuredcorresponding curves for gloss as a function of yD
s, we can vary the detector aperture until weand we compared them to those of an exponential
reach the theoretical value for gloss at the inter-and a Gaussian, for two values of s /l. As one can
section between an exponential and a Gaussiansee, for a given s, all the gloss curves intersect
gloss curve. Because, for other correlation func-within a very narrow interval of yDs. For yDs be-
tions the intersection with the exponential willtween 0.6 and the zone of intersection, the gloss
occur almost at the same yD , we can determine Lcis rather insensitive to the correlation function.
with high precision, independently of the statisti-On the contrary, for large yDs, this difference is
cal nature of the surface, from the value of thequite pronounced. However, for a typical glossme-
experimental receiving aperture and that of yD atter receiving aperture at u1 Å 207 of (du )D Å 0.97,
the theoretical intersection. If we neglect for theand a correlation length of 15 mm, for a wave-
moment the error propagation introduced by thelength of 0.5 mm, yD É 3. For this value, the quasi
measurement of s, for s /l Å 0.1 the maximumexponential gloss curves differ from the exponen-
error committed by this procedure is less than 1%,tial by at most 11%.
and for s /l Å 0.06 is of 3.4%. The latter corre-In many filled polymers the surface height cor-
sponds to the generating correlation function ofrelation extends roughly to the protuberances
C0.3 , that is, a negative deviation from an expo-within themselves, that is, it corresponds to the
nential. For the positive deviations calculated, theself correlation of the protuberances. In this case,
error is much smaller.the correlation length represents an average of

Additionally we could generate a curve of glossthe lateral extension of the protuberances. The
vs. (du )D by varying (du )D . To construct a glossaverage slope of the rough profile will be deter-
vs. yD curve we just have to multiply (du )D by themined by the size of the fillers, melt viscosity, as
factorwell as other processing parameters such as the

injection rate and mold temperature.4–7 This
means that the correlation length will be related yD

(du )D
Zto a combination of such parameters. Therefore,

a measurement of Lc could give a deeper insight
in the effect of such variables in, for example, the
elongational induced stresses at surface. at the intersection. The experimental gloss curve

constructed by such a procedure will give us infor-The fact that the collecting detector angle
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400200-5-1357PE of the Consejo Nacional de Cienciamation about the type of correlation function asso-
y TecnologıB a.ciated to the surface roughness.

If these modifications and calculations are in-
corporated into commercial glossmeters, one

APPENDIX 1could obtain reasonable estimates of the main sta-
tistical parameters of the surface and serve as

In this appendix we calculate the normalizationquantitative developing tool.
power PN , which appeared in the definition of
gloss and was defined as:

CONCLUSIONS
PN Å *

V1/VD

V1
S dPo

dV D dV. (2)

In this article we derived a general expression for
gloss within the scalar Kirchhoff ’s theory where

For a rectangular illuminated section of sidesthe effects of correlation length Lc , the detector
2X and 2Y and an incident electric field of magni-collecting half-angle (du )D , and the statistical na-
tude one, the power scattered per solid angle byture of the surface are taken into account. It was
a smooth surface is:shown that regardless of the correlation function

used, gloss at a given angle depends exclusively
on two parameters, (s /l )cos u1 and (Lc /l ) (du )D . dPo

dV
Å S co

4pDS k2

16p2DA2
MÉroÉ

2(cos u1 / cos u2)2

A corollary of the last statement is that gloss
scales with the correlation length in the same way
as with the detector collecting angle, for all corre- 1 sinc2(kAX )sinc2(kBY ), (A1)
lation functions of the form C (R /Lc ) . Analytic ex-
pressions in the form of series expansions for gloss where AM Å 4XY , ÉroÉ

2 , k , l, A , and B have been
were derived for an exponential and a Gaussian previously defined.
correlation function in terms of these parameters. The total power scattered within the solid angle
Calculations with these show that the incoherent subtended by the detector can be written as:
contribution to gloss is significant in common
polymeric surfaces. The latter implies that sur-

PN Å S co

4pDS k2

16p2D16 cos2 u1A2
MÉroÉ

2
face height correlations cannot be neglected in the
evaluation of gloss. It was shown that Porteus
expression, for specular reflectance for a Gaussian

1 *
(du )D/sinu1

0
*

(du )D

0
sinc2(kX cos u1du )sinc2

correlation function facet model, corresponds to
the present result only in the limit of weak scat-

1 (kY sin u1u3)sin u1d (du )du3 , (A2)tering surfaces. The results for the exponential
and Gaussian correlation function were compared

where A , B , and dV were substituted by theirwith the ones obtained by direct numerical inte-
first-order approximations in du Å u2 0 u1 .gration for quasi-exponential correlation func-

The limits of integration are chosen such thattions. It was found that, for a given s, all gloss
the detector’s collecting solid angle is constantvs. yD curves intersect almost at the same point.
and independent of the specular angle. However,The equivalence between Lc /l and (du )D can be
for a large detector collecting angle, VD @ 1/k2XY ,used to determine the correlation length, and an
we can replace the upper integration limits byexperimental method by means of a glossmeter
infinity because the linear dimensions of the mainwas proposed for this purpose, independent of the
diffraction peak will be of the order of 1/kX (or 1/statistical nature of the surface.
kY ). Therefore, replacing the upper integration
limits by infinity, eq. (A2) reduces to eq. (19) with

We are grateful to E. Méndez for illuminating discus- D (VD ) Å 1.sions and to Industrias Resistol S.A. for the financial
On the other hand, in the opposite limit, whensupport given to the present work. We also like to ac-

the detector’s angular aperture is so small thatknowledge the support given to this work through
VD ! 1/k2XY , it will collect only the very centralgrants IN-102493 and IN-104495 from the Dirección
part of the zero-order diffraction peak. Therefore,General de Asuntos del Personal Académico of Uni-

versidad Nacional Autónoma de México and grant we have to evaluate eq. (A2) at du Å 0 and u3 Å 0,
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