Point charge in a three-dielectric medium with planar interfaces
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A simple method of obtaining integral representations of the electrostatic potential, the

induced surface charge density, and the image potential for a point charge in a three-
dielectric medium with infinite planar interfaces is presented. The total induced charge at
the interfaces is readily evaluated. Numerical results for the image potential in several

illustrative cases are also shown. The case of a point charge between two grounded

conducting plates becomes a special limiting case of the present problem.

I. INTRODUCTION

The electrostatic potential of a point charge between
two grounded conducting plates is well known! since it can
be immediately expressed in terms of infinite series using
the method of images. An alternative method is to treat the
problem as a boundary-value problem and to express the
potential as an eigenfunction expansion.2.3 Nevertheless
interest in this problem continues since these infinite series
are not very useful in practical calculations and alternative
forms of the solution are desirable. Pumplin* and Glasser,3
for example, obtain a simple integral representation of the
potential through a complicated series of integral trans-
formations. It is also knownS that the calculation of the total
charge induced at the plates through the method of images
leads to convergence problems which have to be dealt with
subtle delicacy.3.7:8

In this paper, we demonstrate that the method of images
can be used to obtain an integral representation of the po-
tential through an extremely simple procedure even for the
more general problem of a point charge in a three-dielectric
medium with planar interfaces. The procedure for evalu-
ating the potential due to the infinite array of images is
derived from the observation that a two-dimensional
(parallel to the interfaces) Fourier transform of their
Coulomb potentials leads to a geometric series which can
be readily summed. Transforming back to 7 space imme-
diately yields the potential in integral form. The calculation
of other electrostatic quantities is straightforward and the
resulting expressions have a simple form.

In Sec. 11 we calculate explicitly the electrostatic po-
tential of the system in all regions of space for an arbitrary
position of the point charge. The potential of a point charge
between two grounded conducting plates separated by
vacuum becomes a special limiting case of our general ex-
pression for the potential which, in this limit, reduces to
Glasser’s form.> In Sec. III we use the formula for the po-
tential derived in Sec. II.in order to obtain an integral ex-
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pression for the surface charge density induced at the ip.
terfaces for an arbitrary position of the point charge. The
total charge induced at the interfaces is also readily eva)-
uated without any convergence problems or the use of any
special artifice even in the limiting case when one or two of
the media are conductors. Section 1V is devoted to the
calculation of an integral expression for the image potential
which in the case of two grounded conductors separated by
vacuum can be integrated in closed form. For other illus-
trative cases we perform the integral numerically. In Sec.
V we present a synopsis of our results.

II. THE ELECTROSTATIC POTENTIAL

We consider a point charge Q imbedded in an inhomo-
geneous system with planar interfaces perpendicular to the

z axis and characterized by the sequence of dielectric con-
stants:

e, z<-—a;
6, —a<z<ar
€&, z>a4. (1)

Without loss of generality we locate the point charge on
the Z axis at z = z’. The geometry of the problem is shown
in Fig. 1 where R, z, and ¢ are cylindrical coordinates. Since
our problem has azimuthal symmetry the potential in cy-
lindrical coordinates does not depend on ¢. Therefore we
introduce the notation v(R,z;z’) as the potential at (R.z)
due to a point charge at z = z’. For simplicity and continuity
in the presentation we describe our procedure first by con-
sidering the case —a < z’ < a and by calculating the po-
tential only in the region —a < z < a. The solutions for the
other regions of space and for the other possible point charge
positions are obtained through similar manipulations, an
we only quote the results in a separate table.

Using the method of images®1° a straightforward cal-
culation (for —a < z’ < aand —a < z < a) yields

Ly

(R,z;z") == -3
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Fig. 1. Cross section of the system along a plane of symmetry.

where
Lix = (¢ — &)/ + €2); i=13. (2b)

We define the two-dimensional Fourier transform F(k;z)
of a function f(R,z) as

Flkz) = f d2R f(R.z)e=ixR, 3)

where x and R = (R,¢) are two-dimensional vectors parallel
to the interfaces. The inverse Fourier transform is then

_ d2x
f(R'Z) - (27‘_)2

Therefore the Fourier transform of the Coulomb potential
of a point charge Q atz = 2z’

f(R,z;2)

F(k,z)eixR, 4)

= Q ]
|R2+ (z — 2/)2| 12

(5)

is
F(x,z;z") = Q2 /k)e~xlz==', (6)

Taking now the Fourier transform on both sides of Eq.
(2) yields

2

Vikz;z') = .Q [e—xlz—z'l — (lee—x|z+z’+2a|
€2

K

+L32e—x|z+z’—2a| z (Ll2L32e-—4xa)n
n=0

+ (e—x(z-z’) + ex(z—-z’)) i (leLne—mca)n) } (7)
n=1
Since a geometric series is readily summed
5 pre ]
n=0 1 —r
Eq. (7) becomes

Vixziz') = (Qfe)(2n/x) fe=x1:=71

—A(K’D)[lee_K|Z+Z'+DI + L32e“KIZ+Z'—'DI
_LIZLBZe—ZxD(e-—xlz—z’l + eK(Z—Z,))]}’

, —1<r<t; (8)

(92)

where D = 2a is the separation between media 1 and 3,
and

A(,D) = [1 = LyL3pe=2P] 1 (9b)

In Eq. (9a) the first term on the right-hand side is the po-
tential produced by the point charge and the next terms
correspond to the potential produced by the charge induced
at the interfaces. For other regions of space and for other
possible positions of the point charge the Fourier transform
V(x,z;z") of the electrostatic potential is calculated through
the same procedure. The results for all different cases are
shown in Table 1.

Table 1. This table shows, in all regions of space, the two-dimensional Fourier transforms V(R,z:z") of the electric potential produced by a point
charge Q, located on the Z axis at z = z’, in a three-dielectric medium with planar interfaces. The medium is characterized by the dielectric
constants €y, €3, and ¢3 for the regions z < —z, —a < z < g, and z > a, respectively, and « is a two-dimensional vector parallel to the interfaces.

Region of space

V(x,z;2")

et €3/ «

€ K

Casel:—a<z' <a

~>a (_E_Q_) 2_75 A(K.D)[e“‘z_z'l — Lue—x(D+|:+:'|)]

2 , . . , ,
—a<z<a _Q__I. xe-—xlz—: | — A(K,D)[Lne"":"” +D| 4 Lne—x{:ﬂ -D} — lel_”e-zxo(e—xl:—: | 4 exlz—z ])”

2 2
< —q < Q ) il A(K'D)[e—xlz-f-z’l - lee_‘lb_f"':"]

e2t e/ «x

Casell:z’ >a

2w
z>a
€3 K

—a<z<a (
€3+ €

z< —a Q(

€2+ € €+ €3

_Q._ [e—xlz—z’| + lee—xlz-i-z’—D] - (

_gl)( 2e2 )LIZA(K'D)Q—K<D+|Z|+|Z'|)]
e3+ €

e+ €3

2
) _7r A(K.D)[e"‘k“z'l — lee~x(D+lz+:’|)]
X

2 )( 2¢ )[e"‘l-"-’" — e=xlz14127D 4 A(k,DYe—xUzI+iZ'D)]

Case lll: 2/ < -z
Case I11 is obtained directly from case 1I by replacing ¢) <> ez and z — —2z. L]
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In order to obtain an integral expression for the potential
we transform V(k,z;z") back to R space using Eq. (4). Since
the problem has cylindrical symmetry, we can write

© xd
v(R,z;z') = j; (sz;(z V(k,z;2")

27
x‘j:) d¢eichos¢‘ (10)

where the axis from which ¢ is defined is irrelevant. But the
¢ integral is an integral representation of the zero-order
Bessel function!!

Lo,
JO(X)=Z£ d eiX coso (1

thus we can write the electrostatic potential

u(R,z;z/)=2—17; J; " dxlokR)V(kziz')  (12)

as a single definite integral where V(k,z;z) is given in Table
L.

Since a perfect conductor is characterizd by an infinite
static dielectric constant the potential of a point charge
between two grounded conducting media separated by
vacuum is obtained directly from Eq. (9) by taking the limit
e, — 1 and ¢ = ¢3 — = (or equivalently L;» = L3; = 1).
It is a property of the image method® that in this limit
(metallic limit) both conducting media become grounded
(thus in short-circuit) since the images are then constructed
by keeping both interfaces at zero potential. For any other
finite values of ¢; and 3 the two media are isolated from
each other.

Taking the metallic limit in Eq. (9a) we obtain

V(K,Z;z/) = Q (271'/K) [e—xlz—z'] .

cosk(z + z’) — e~*P coshk|z — 7|
- ( . ) E)
sinhkD

written (for z > z”) as

4
Vkz:2'y=Q =z
K

sinhe(D/2 + z’) sinhs(D/2 — z2)
X ( sinh«D > (14)

which reduces to Glasser’s form® when substituted ip Eq
(12). '

It is also important to realize that our general solutigy,
for the potential v(R,z;z") can be used to solve an even more
general problem. The function v(R,z;z") is, by definition9.12
the two-dimensional Green’s function of Poisson’s equation
in the geometry of the present problem with the boundary
condition of vanishing potential at infinity. It is calleg
two-dimensional because it does not depend on the angular
coordinates. Therefore the potential vA(R,z) of an arbitrary
linear charge density A(z) of finite extent along the Z axis
in the present geometry is given by superposition through
the integral

va(R2) = fdz’ v(R,z;2") N(2'), (15)

where the limits of integration are determined by the extent
of the linear charge distribution which has to be finite in
order to fulfill the boundary condition at infinity.

III. SURFACE CHARGE DENSITY

In this section we calculate the surface charge density
o(R,xa;z’) induced at the interfaces xa for —a <z’ <a.
The calculation of ¢(R,£a;z”) for the other possible posi-
tions of the point charge is done following the same proce-
dure and we only quote the results in Table 11. We also
calculate the total charge induced at the interfaces for an
arbitrary position of the point charge.

The induced surface charge density is given!? by the
discontinuity of the normal component of the electric field
at the interfaces which in our case can be written

o(R xa;z’) = (1/4x)[E: (R, xa+:2")

where the first term on the right-hand side shows explicitly — E,(R,+a_:;z")]. (16a)
the contribution to the potential due to the point charge. It where

can also be seen from Table I (case I) that in this limit ¥ —

0 for z > a and z < —a corresponding to the case of two as = lim (a + §). (16b)
grounded plates as stated above. Equation (13) can also be 5—0

Table I1. This table shows the two-dimensional Fourier transform of the surface charge density Z(x,%a;z") induced at the interfaces at - = *a by

a point charge Q, located on the Z axis at z = 27, in a three-dielectric medium with planar interfaces. The.medium is characterized by thc_diclcclric
constants e, ¢2, and €3 for the regions z < —a, —a < z < a, and z > a, respectively, and k is two-dimensional vector parallel to the intertaces.

Casel:—a <z <a

B(kaz’) = —Q%ZA(K,D) [exlz'=al — [ ,e=«(D+]+aD)]

Ly,

Snmar) = —Q = A(x,D)[ex12"tal — Lype=x(P¥|'=ab)]

Casell:z’ > a

o L;:[ ( 2¢e5
Y(xa; =0-—11+
(ka:z’) QE3 3+ €2

2

A

) A(K,D)lee—z"’)] e—"(]3'|—D/2)

A(K,D)lee——x(lz'|+[)/2)

Case Il: 2/ < —a

Case !11 is obtained directly from case H by replacing ¢; > ¢3 and @ ~> —a.
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Here and in the following expressions the upper sign of
g refers to the interface at z = +a and the lower sign to the
interface atz = —a.

Since E = —Vu, the Fourier component £(k,z:z") of
E(R,z;2) is given by

£(k,z;2’) = ikV(k,z;z') — k ai Vikzz’), (17)
z
where £ is the unit vector along the Z axis. Thus the Fourier

transform Z(k,£a;z’) of the induced surface charge density
s(R,£a;z") becomes

1[4
sk xaz’) = . [-; Vik,z:z")

Incase I (—a < z7 < z) substitution of the relevant ex-
pressions of Table I into Eq. (18) yield

2(k,z:2) = —=Q(L3/e2) Ak, D) [e~x|7'~al
- lee—K(D+|z'+a|)]

(19)

and the charge density Z(x,—a;z’) induced at the interface
z = —a is obtained from Eq. (19) by exchanging ¢, <> ¢ and
changing a — —a. All the other possible cases are shown
in Table II.

The induced surface charge density o(R,%a;z") is now
obtained by transforming Z(k,%+a;z”) back to R space
through Eq. (4) yielding

U(R,:l:a;z')=21—1r j; " kde JokR)E(k 2aiz’)  (20)

in an integral form. Z(x,%a;z’) is given in Table I1.
The total charge g(%a;z’) induced at each interface for
an arbitrary position z’ of the point charge is obtained,

g(xa;z’) = fdzR o(R,xa;z") (21)

by integrating the induced surface charge density over the
whole interface area.

. Nevertheless g(+a;z’) can be readily calculated since,
by comparing Egs. (3) and (21),

g(xa;z’) = Z(x = 0,%a;z'). (22)

Thus g(£a;z’) is simply the « = 0 component of the induced
charge density Z(,z;z’).

Therefore in case I (—a < z’ < a) the total charge in-
duced at the interface is obtained from Egs. (22) and (19)
and it is given by

q(a;z’) = —(Qfex)(e3 — &2)/(e3 + €1) (23a)
and similarly
q(—a;z’) = —(Q/e2)(e1 — €2)/(e) + €3).  (23b)

We can see that the total charge induced at the interfaces
9(+a;z’) does not depend on the position z’ of the point
charge.

The total charge ¢(z’) induced at both interfaces is
Simply

q(z’) = q(—a;z’) + q(a:z’); (24)
the combination of Egs. (23) and (24) yields
q(z’) = —(Q/e)[1 — 2&2/(e1 + €3)]. (25)
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On the other hand the total volume polarization charge g,
induced “around” the point charge is given by®

g = (Q/e2)(1 = €2).

Therefore the total charge gr = g(z’) + g, induced in the
system is, in this case,

gr = —QI[1 —2/(e; + e3)],

different from zero. This is due to the fact that g+ does not
correspond to the total polarization charge induced in a
dielectric system of finite size in which the total polarization
charge is always zero. Since the width of two of the dielec-
tric media is infinite one is not considering the contribution
of the polarization charge in the outer boundaries *“at in-
finity.” This is not the case, for example, of a point charge
imbedded in a dielectric slab surrounded by vacuum. In this
case (¢; = €3 = 1) the total charge induced in the system is
the total polarization charge and from Eq. (27) one obtains
by setting ¢} = ¢3 = | that g+ = 0 as expected.

In the limiting case of a point charge in vacuum between
two grounded conducting plates (L2 = L33 = 1;e2=1) Eg.
(19) becomes

(26)

(27)

e—xlz+al — g—x(D+|z'%al)

Z(x,xa;z’) = —-Q (28)

1 — e-—ZKD
According to Eq. (22) the total charge g(#a;z") induced
at each plate is the «x — 0 limit of Eq. (28). Using L’Hos-
pital’s rule this yields the well-known result!3

g(*a;z’) = —Q[(D/2 + z')/D] (29)

and

q(z’) = —Q (30)

in which the total charge g(#a;z’) induced at each plate
depends on the position z” of the point charge and adds up
to —Q.

The calculation of g(%a;z’) through Eq. (22) has a
simple physical interpretation. The Fourier transform of
the electric field £(x,z;z") of a point charge Q located at z
= 7/ is obtaining by combining Eqgs. (6) and (17) to yield

E(k,z;2’) = 2nQe—xlz=#I[ik + k sgn(z — z')], (31)

where % and £ are unit vectors in the direction of x and the
Z axis, respectively. The x = 0 component of £(«,z;z’) is
simply

£(k = 0,2:2") = 20k sgn(z — 2'), (32)

the electric field E (in R space) produced by an infinite plate
at z = z’ with charge density Q. Thus, in the present prob-
lem, Z(x = 0,4a;z") is the surface charge density induced
by this plate at each interface. In conclusion, the problem
of obtaining the total charge induced by a point charge at
each interface of a three-dielectric medium with planar
interfaces is equivalent, according to Eq. (22), to the cal-
culation of the surface charge density induced by an infinite
plate. Through the use of symmetry arguments Purcell'
already has utilized this procedure in the calculation of the
total charge induced by a point charge at the grounded
plates of a capacitor. Here we show explicitly the validity
of his procedure within the context of a well-defined method
for the complete solution of an even more gen€ral prob-
lem.
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Fig. 2. Image potential in units of @/4De; for a point charge imbedded in a dielectric medium located between two identical semi-infinite media asa
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»

In case 11 (z > a) combination of Eq. (22) with the rel-
evant expressions of Table 11 yield

g(a,z’) = Qei(es — e2)/ezealer + €3) (33a)

and
g(—ai') = =Qe1 = e@)/ex(er + €3)  (33D)
and the total charge induced at both interfaces becomes

q(z') = Q(e3 — e)/(e3 + ). (34)

In the case of a point charge in front of a dielectric slab
surrounded by vacuum (¢e; = e3 = 1) Eq. (33) reduces to

g(xa;z’) = £0(1 — &) /2¢, (35)

the total charge induced at one interface is equal in mag-
nitude but opposite in sign to the one induced at the other
interface. Consequently the total induced charge at both
interfaces, which in this case coincides with the total surface
polarization charge, cancels. For a point charge in front of
a conducting slab (e — «) Eq. (35) reduces to g(+a;z’)
= +0Q/2.

In case 111 (z < a) g(£a;z’) and g(z’) are obtained from
Egs. (33) and (34) by exchanging, €; <> €3.

IV. IMAGE POTENTIAL

In this section we make use of the expressions derived
already in Sec. II in order to calculate the image potential

1176 Am. J. Phys., Vol. 46, No. 11, November 1978

of a point charge at an arbitrary position of the charge in
the three-dielectric medium.

First we discuss in detail the case when the point charge
is located at —a < z’ < a and only quote the results for |2’

> al.

By definition, the image potential vim at z = z’ can be
written as

Uim(2’) = —J:: E -dl, (36)

where zo is the origin of the potential, E’ is the electric field
at the point charge position (R =0,z = z’) due to then-
duced charge density at the interfaces, and the Z axis 18
chosen as integration path.

Due to the azimuthal symmetry of the system the field
E’(z’) has only the z component which can be written

E.(z’) = lim (37
R0

(- % vne(R732)):

where ving(R,z;2’) is the potential produced by the induced

surface charge at the interfaces in the region of interest-
Uing is Obtained from the total potential v(R,z:2") of the

system by substracting the potential vseif produced by the

point charge itself, thus
*

vind(R,2;2") = v(R.2;2") — Uselt- (38)
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In case I (—a <z’ < a), vjnq is obtained from Egs. (92a)
and (12). Since in Eq. (9a) the first term on the right-hand
side represents the contribution to the potential from the
external point charge, ving is readily written

bing(Rz:z") = — £ f dx Jo(kR)A(k. D)

X [lee—xlz-!—z +D| } L3ze—x|z+z -D|

— LysLye=2D(e=xG=2) 4 ex(z=2))].  (39)
Using Egs. (37) and (39) we can write
E ()= Q k dx A(x,D)e—*P
X (Lie=2" — L3e2).  (40)

Substituting Eq. (40) into Eq. (36), choosing the zero of
the potential at the origin zo = 0, changing the order of in-
tegration, and integrating over z’ from O to z/, we obtain

Vim(z’) = — EQZ j;m dx A(x,D)e~*P[L e~ 2
2
+ L3e¥ — (Lia+ L3)].  (41)
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Insertion of Eq. (9b) into Eq. (41) and the following
change of variables,

¢=z//D and x= 24D, (42)
leads to the following expression:
3 e (- [lee'f"/z“Lszewz] . hL".
Uim($) 5D d T Ll sinh <%

= h<i<th (43)
which can be integrated by numerical methods.
At the metallic limit (e2 = L2 = L3> = 1, Eq. (43) takes
a simpler form

(=2 (" ay e e (). @0

where the variable of integration has been changed toy =
x/2. But this integral can be expressed' in closed form

vim(§) = (Q/4D)[Y(h = O) +¥(h + ) — 20(H)]  (45)

in terms of the ¥ (digamma) function.'? ®
Numerical integration of Eq. (43) is performed in order
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to illustrate some typical cases. Since the integral diverges
at { = +15 we split the integral from 0 to = into an integral
from O to XM plus an integral from XM to «. The value of
XM is chosen high enough such that the integral from XM
to « can be done analytically, to any degree of accuracy,
by approximating the integrand by an exponential. The
integral from 0 to XM is then performed through the Gauss’
integration method.!6 In Fig. 2 we show a plot of v;, as a
function of { in the case of a point charge in a dielectric
medium between two identical dielectric half-spaces (L,
= L3y = L), for different values of L. The curve at the
bottom correspond to the case when the two half-spaces are
conducting (L = 1)) and its expression if given by Eq. (45).
Figure 3 shows graphs of vj, as a function of { in the
asymmetric case in which medium 1 is a conductor (L, =
1) and media 2 and 3 are dielectrics for different values of
L32. !

In case II (z’ > a) the corresponding expression for the
image potential becomes

Uim($) = [(QL32/€3)/4D1{1/(§ — )]

Lis € o e~ (&+1/2)x
—oEr A (Tt
D (e + €3) 0 1 — LisL3e™x
h<{<= (46)

where {=z’/D, x = 2«D, and the zero of the poteniial has
been choosen at infinity ({ = ).
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In the case of a metallic slab in vacuum (e; = e3 = 15 &
= ») Eq. (46) reduces to ¢

vim(z") = —Q/4(z’ — D/2) (47)

which is the image potential of a point charge in front of an
infinite conducting medium.

Performing, as before, a numerical integration of Eq.
(46) we show in Fig. 4 a plot of vjr, as a function of {in the
case of metal-dielectric-vacuum system (L2 = ;3= 1)
for different choices of e;.

Case III (2’ < —a) is obtained from Eq. (47) by simply
changing ¢; <> e3and { — —¢.

Y. SYNOPSIS

In this paper we have obtained an exact integral repre-
sentation for the electrostatic potential, the surface charg¢
density, and the image potential for a point charge in af
arbitrary position, in a three-dielectric medium with planaf
interfaces. d

The potential is calculated by the method of images an
through a two-dimensional Fourier transform (paralle 19
the interfaces) we sum the contribution of the infinite array
of images which turns out to be a geometrical series. | ¢
inverse Fourier transformation gives the cqrrespon ing
expression in R space in an integral form. Thus this me€
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an be very illustrative for students without the use of
complicated mathematics.

The calculation of the other electrostatic quantities fol-
|ows immediately. For the image potential we perform the
integrals numerically and we show plots for different

cases-
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