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The superluminal transmission of evanescent light pulses through optically opaque barriers, is analyzed using simple considerations of causal
electrodynamics. By exact numerical calculations, as well as with analytical arguments within the stationary-phase approximation, we show
that superiuminal transmission occurs whenever the main frequency components of the pulse ure confined to frequency regions where the
presence of the barrier decreases the density of states of the electromagnetic modes of the system. We also show that these frequency regions
correspond to the transmission gaps of wide enough barriers. We discuss a very simple theory for the density of states of the barrier system
and compare the results of such a theory with numerical calculations. The results are iflustrated with two different models for the barrier, and
we find the limits of validity and of occurrence of the phenomenon. We argue that causality is not violated in this type of situations.
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Se analizu la transmisién superluminica de pulsos de luz evanescentes a través de barreras épticas opacas, usando consideraciones sencillas
de la electrodindmica causal. Por medio de célculos numéricos exactos, asf como con argumentos analiticos dentro de la aproximacion de la
fase estacionaria, mostramos que la transmisién superluminica ocurre siempre que las componentes principales de las frecuencias del pulso
estén confinadas a regiones de frecuencias donde la presencia de la barrera disminuye la densidad de estados de los modos electromagnéticos
del sistema, Mostramos también que estas regiones de frecuencia corresponden a las brechas de transmisién de barreras suficientemente
anchas. Discutimos una teorfa sencilla para la densidad de estados de la barrera del sistema y comparamos los resultados de tal teorfa con
célculos numéricos. Ejemplificamos nuestros resultados con dos modelos diferentes para las barreras y hallamos los lfmites de validez y de

ocurrencia del fenémeno. Argumentamos que la causalidad no se viola en este tipo de situaciones.

Descriptores: Transmisién superlumfnica; pulsos electromagnéticos; tiempos de tunciaje; efecto Hartman; causalidad
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1. Introduction

In most of the textbooks of classical electrodynamics [1] it
is seemingly explained that there can be no propagation of
electromagnetic signals faster than the speed of light in vac-
uum. Nonetheless, many experimental reports on superlumi-
nal propagation of electromagnetic radiation have recently
appeared. These experiments analyze the behavior of either
single photons in wavepacket states or of electromagnetic
pulses traveling through diclectric barriers (2], or through

microwave cavities [3-5), or across media with anomalous -

dispersion near an absorption or gain line [6], or between
two gain lines [7,8), or in frustrated total internal reflec-
tion [10,11]. The salient common features of these experi-
ments are
i). That cither the electromagnetic pulses or the media
are chosen in such a way that most of the frequency
components of the radiation lie in frequency regions
where the propagation is evanescent, namely, where
the barrier is optically opaque.

i) Typically, the experiments measure the coincidental ar-
rival of a pair of pulses, one that crossed the opaque
barrier, and one traveling unimpeded.

Such a measurement yields the apparent result that the trans-
mitted pulse crossed the barrier at speeds greater than the
speed of light in vacuum. This is what we call here super-
huninal transmission. The explanation of this result, as in

any of the different types of experiments, may be cast in the
same way: the detection of the coincidental arrival refers to
the coincidence in arrival of the peaks of the pulses, and one
can show, as we do below, that there is no causal connection
between the arrival of the peaks {12]. Although this simple
staternent should be enough to rule out the possibility of su-
perluminal transmission, we find it valuable to address and
review these issues within the framework of classical elec-
trodynamics. Our objective is to establish the conditions for
the occurrence of superluminal transmission. We believe that
we can gain a better understanding of the propagation of light
pulses through matter, and we can also verify, at least within
the present framework, that neither superluminal transmis-
sion can occur nor violations of causality.

To be more precise, in this article we analyze, using
causal classical electrodynamics, the tunneling of a classical
light pulse through an optical opaque barrier. By an optical
opaque barrier we mean any arrangement of optical compo-
nents which produce, in the frequency domain, gaps in their
transmission amplitudes. We restrict ourselves to the casc
of 1D tunneling by considering plane-wave pulses traveling
perpendicular to the interface of barriers consisting of slabs
of a single material with a transmission gap, as in the expe-
riments by Wang er al. [8], or an alternate array of layered
materials, as in the experimental arrangement of Spielmann
et al. {2}. In these arrangements, a gap can be defined as the
frequency region in which the normal modes of the corres-
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ponding boundless system become evanescent in the dissi-
pationless limit. For example, in the case of a slab made of
« single material, this happens at the frequencies in which
the index of refraction becomes purely imaginary. An altes-
native and probably more precise definition of a gap refers to
- it us the frequency region in which the density of states of the
electromagnetic modes in the corresponding boundless sys-
tem, vanishes. According to both of these definitions, a gap
can be found only in lossless materials, since for dissipative
materials the propagation is never truly evanescent [9] and the
density of states cannot be properly defined. In real materials,
however, one couid still identify frequency regions that will
become gaps through a proper analysis of the dissipationless
limit.

There have appeared in the literature several studies that
analyze this same transmission or tunneling phenomenon
along similar [13-16] and other lines [17-19). Within the
stationary-phase approximation, in which it is assumed that
the shape of the puise suffers only slight distortions while
traveling through the medium, it has been already established
that the time deluy between the peak of the tunneling pulse
and the unimpeded one is given by the so-called phase time.
The phase time is defined as the frequency derivative of the
phase of the transmission amplitude. As we shall illustrate
using two different models for the barrier, it turns out that the
phase time is always negative for thick enough barriers and
for frequencies within the transmission gaps. It follows that

superluminal transmission occurs whenever the phase times -

becomie negative and the main frequency components of the
incident puise lie within the gap (2, 3, 6, 13, 16]. We shall also
see that the phase time is always positive for frequencies out-
side the gaps and we shall argue that this is a requirement of
causality. .

Thus, our goal in this study is to establish the conditions
under which these phase times tumn out to be negative. Our
main result is that superluminal transmission will be. possi-
ble whenever the presence of a barrier causes a decrease in
the density of states of the electromagnetic modes of the sys-
tem in compurison with the density of states in the absence of
the barrier. We illustrate this by proposing a simple approxi-
mation to evaluate this change in the density of states. Fur-
thermore, we show that this decrease in the density of states
alwuays occurs for thick enough lossless barriers and that the
corresponding phase times, besides being negative, are pro-
poitional to their width, whenever this width is not too large.
We have already given a brief account of these arguments, see
Ref. 20. Moreover, we also show here that as the width of the
burriers increases the pulse transmission becomes subluminal
again, but the shape of the transmitted pulse is too distorted
to.be still considered a “pulse”. We then display a direct nu-
merical test for the limits of validity of the stationary-phase
approximation in relation with the conditions found here for
superhwminal tunneling.

As mentioned above, we proceed by concentrating our
study in-the analysis of two particular models, first, a barrier
made of a dissipative material with a single lorentzian reso-

nance and, second, a basrier made of alternating layers of
non-dissipative, dispersionless materials with high and low
indexes of refraction. Both of these models are treated in a
unified manner through the use of a transfer-matrix forma-
lism. The first model will serve to obtain illustrative analytic
results, while the second will serve to show explicitly the re-
lationship between our calculations and the experiments of
Spielmann et al. [2]. We will also show that in the frequency
regions outside the gaps the density of states is always in-
creased by the presence of the barrier. We argue that this
is a consequence of causal propagation which, in our ana-
lysis, is guaranteed at the onset by construction, In this re-
gard, we will also verify that causality, understood as the fact
that effects cannot precede the causces, is indeed satisfied. We
recall, nevertheless, that Heitmann and Nimtz [21] have ar-
gued that Einstein causality, namely, that no signal cantravel
faster than light in vacuum, cannot be verified in the type
of experiments discussed here. Although we proceed by ana-
lyzing the two particular models of barriers discussed above,
we shall conclude that our results are quite “universal”, and
they hold for any slab with transmission gaps. It is also of
interest to mention that the present problem is very similar
to the non-relativistic quantum situation of a particle tunnel-
ing through a barrier {22]. In this case it is found that, as the
barrier becomes thicker, the tunneling probability becomes
smaller, as expected, but the tunneling time becomes shorter.
This is known as the Hartman effect [23], and the electromag-
netic situation we consider may also be seen as an extension
of such a result.

The present article is organized as follows. In the next
section we write down the causal analytic expressions for
the transimitted and reflected fields for a normally incident
plane-wave pulse in terms of the transfer matrix of the bar-
rier. In Sec. 3, we analyze the phase of the transmission am-
plitude for the particular cases mentioned above and intro-
duce the relationship between its frequency derivative (phase
time) and the change in the density of states due to the pre-
sence of the barrier, Then, it is explicitly shown that in the fre-
quency domain corresponding to transmission gaps the phase
time can become negative, while it is always positive outside
these gaps. In Sec. 4, we use a simple analytic argument to
demonstrate that the superluminal effect appears for an inci-
dent pulse whose frequency bandwidth is inside the gap: as
a follow up one can immediately show that the time duration
of the transmitted pulse is shorter than the incident one, in
agreement with previous analysis [19] and recent experimen-
tal results {2]. We corroborate the analytic results derived in
this section, through a numerical analysis of the transmission
of pulses across the barriers discussed in Sec. 2. This sec-
tion ends with a brief discussion about the consequences of
causality. Section 5 is left for our conclusions, a brief analysis
of the effects of dissipation and some final remarks.

2. Transmitted and reflected fields

The purpose of this section is to introduce our notation, our
main definitions and the transfer matrix formalism. The phy-
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sical system consists of a linearly polarized electromagnetic
pulse traveling in vacuum and impinging normally on a
slab of thickness d. For definiteness, we place the slab be-
tween £ = 0 and z = d, and assume that the pulses are
polarized along the y-direction. The dielectric properties of
the slab vary only along the z-direction, and we consider
plane-wave pulses whose electric and magnetic fields vary
only along the z-direction. Thus we end up effectively with
a 1D-problem. We call E,(z,t), E,(z,t) and E,(z, t) the am-
plitudes at time ¢, of the incident, reflected and transmitted
electric fields, respectively. The amplitudes of the reflected
and transmitted electric fields are related to the incident one
hy the causal relationships,

t
E.(z,t) = / dt' #(t — ) By(z, "), m
forz < 0, and
t -
E(z.t) = / &t it - E@t), @

for z > d. The field E;(x,t) is defined for all = and ¢ and

the coefficients #(7) and £(r) are the reflection and transmis-

sion amplitudes of the barricr, assuming that in the remote
past (f & —o0) there are no reflected and transmitted fields.
The relationship, in the frequency w domain, between the
time Fourier transforms of the electric field E, (z = 0%;w)
and the magnetic field B, (z = 0%;w) with B, (z = d™;w)
and B.(z = d~,w), can be written as

Ez=d"w)]_~ . [EE=0"w)
[B,(z = d_,W)] N Md(w) [Bz(z = 0+,W)] ’ @

where M ,(w) is 4 2 x 2 matrix, called the transfer matrix. It
is a simple exercise to show that the time Fourier transform
of the refiection and transmission amplitudes r(w) and t(w)
are given by [25] . ’ .

My + My - My - My,

r= , @)
My, + My, ‘_1},{11 - My,

and
_ 2
My, + M-n - M - M

=

e-iud/c, ) (5)

where M,; (¢,j = 1,2) are the elements of 1\7,,. and we have
suppressed their explicit w dependence.

The transfer matrix of a system composed by N slabs,
euch of them of thickness d; and index of refraction n;, is
given by the matrix multiplication of the transfer matrices of
each slab [16, 25}, that is,

My=M,, - M, --M,, ©)

whered = 3 ; d;- The transfer matrix of a single slab of
thickness d; and index of refraction ny(w) can be readily

written in closed form [25], while for a multilayer system the
matrix multiplication given in Eq. (6) has to be performed
prior to the substitution into Eqgs. (4) and (5). In this case,
it is not possible to obtain a simple closed-form-expression
for r{w) and ¢(w), thus their calculation has to be done nu-
merically.

Taking into account the causal property of the coeffi-
cients #(7) and i(7) (e.g. £{(r) = 0 for * < 0), one can
write general analogous expressions for the refiected and the
transmitted pulses as integrals over frequency, that is,

B 00
Ei(et)= 5 / dw R(w)e ) Ey(w)e=(=+/e (7)
-0
and ..L‘..
00
Bt = 5 [ doT@)e*ORwel, ®
~00

where we have defined .

r(w) = R(w)e' ) .9
and

t(w) = T(w)eiv), (10)
Here R{w) and T(w) are the moduli of the reflection and
transmission amplitudes, while ¢, (w) and ¢,(w) are their
corresponding phases. Here B, (w)e™*/¢ is the plane-wave
component of the incident field with frequency w.

The expressions for the fields Eqs. (7) and (8) are the ba-
sis for our analysis. We stress the well-known fact that in or-
der to get the shape of the reflected and transmitted pulses,
one just needs to know the frequency dependence of the re-
flection and transmission amplitudes. The transmission and
reflection amplitudes are functions of the width d of the bar-
tier, and this dependence plays an important role in the su-
perluntinal effect.

3. Models, phase time, and density of states

In this section, we define the two models for the barriers
that shall be analyzed in this work and we shall find the fre-
quency regions that correspond to the transmission gaps. Our
analysis will be concentrated on the study of the modulus
and phase of the transmission amplitude inside and outside
the frequency regions of the transmission gaps. These results
shall then be used to calculate the density of states of the
clectromagnetic modes. We shall show that inside the gaps,
and for sufficiently wide barriers, the density of states is de-
creased due to the presence of the slab. This will serve, in
the next section, to show that superluminal transmission is
related to this decrease in the density of states and that it is
a quite generic property of materials with transmission gaps.
Since most of the content of this section has already been ana-
lyzed by us in Ref. 20, we shall present here only some defi-
nitions and the main results to make this paper self-contained.
" The models are:

a) A slab of length d made of an absorbing material with

an index of refraction n(w) having a single lorentzian
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resonance [1), that is,

2

: w
= —_—
n{w) = 1+w3—w’-i ,

(1)
where w,, is a model parameter with units of fre-
quency, w, is the resonance frequency, and v is the
damping parameter related to energy dissipation. The
real and imaginary parts of n(w) will be denoted
as n{w) = n'(w) +in"(w).

b) A multilayer of alternating media with (real) high and
small indexes of refraction, n, and n; and with equal
widths d/2. This is the case experimentally analyzed
by Spielmann et al. (2].

According to one of our definitions, the gaps arc fre-
quency regions in which the normal modes of the correspond-
ing boundless system become evanescent in the dissipation
less limit. In model (a), the wave vector ¢ of a plane wave
inside the corresponding boundless system is given by

g=n(w), (12)
where n(w) is the index of refraction given by Eq. (11) and
we are using cgs units. In the dissipationless limit (y =+ 0)
the plane waves become evanescent when the wavevector ¢
is purely imaginary, and this occurs in the frequency re-

gion wy € w < /w3 4w}, which defines the gap. This
model has been thoroughly discussed (13, 15, 3, 14,19), and
its similarity with non-relativistic quantum tunneling through
a barrier [22] has been also analyzed.

The corresponding boundless system for model () is
a periodic superlattice with the period given by the total
length d of the two layers of index of refraction ny and n,. In
this case, the dispersion relation of the normal modes of the
system, that is, the relation between their Bloch wavevector £
and the frequency w, is given by [25]

cosdy = %[M“(w) + My (w)], (13)

where dy is the length of the period of the superlattice
and M, {w) are the ij-th elements of the transfer matrix cor-
responding to dy. Direct substitution of the closed-form ex-
pressions of M;; (w), for a single slab, in the matrix clements
of Eq. (6), yields [16, 25)

1in,  na\ .. (kido) . kado)

2(71, +nl)sm< 3 sin 7 ) (14)
where k, = mw/c, ky = nyw/e, and dy/2 is the width
of each layer. Bloch evanescent modes appear when the fre-
quency is such that x becomes purely imaginary. These fre-

quency regions are also known as photonic band gaps where
there is no energy transport.

) -/-;4.0

o0 o8 6 15 20 25 30 a8
o/,

(@

UL

" [ " Y] 2 as
wle,
(b)
FIGURE 1. Density of electromagnetic states, Eq. (15), a) mo-
del (a), Eq. (11). Time units are rescaled with wo and b) model (),
Eq. (14). Time units are rescaled with do/2c where dg is the width
of a single bilayer.

= Njw)c)

One can easily show that in the case of a boundless sys-
tem the density of states N (w) of the electromagnetic modes
is given by

aN(w)=1L (15)

dw!™?
dk | *
where L(— 00) denotes the size of the system and the wave-
vector & is real, When & is purely imaginary, N(w) = 0, and
this defines a gap. For model (a), x = ¢ and N(w) for the
boundless system becomes 7N (w) = L(n' + wdn’/dw)/ec,
which is plotted in Fig. la for a specific choice of parameters.
For the infinite superlattice, one combines Eqs. (14) and (15)
to determine the density of states, This is shown in Fig. 1b
for a set of parameters corresponding to the experiment of
Spielmann ¢t al. [2]

When the barriers are of finite width the calculation of the
density of states is not as simple as described above. How-
ever, Avishai and Band [26), using an S-matrix formalism
previously developed by Dashen, Ma and Bernstein {27), de-
rived a relationship between the phase time 7,, defined as,

rew) = 2L, a6
and the density of states N (w). They found
To(w) = (N (W) - No(w)], an
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where ¢, is the phase of the transmission amplitude of the
barrier, N(w) is the density of states of the system in the
presence of the barrier and Ny(w) is the density of states of
the system in the absence of the barrier. In other words, 7, is
proportional to the change in the density of states due to the
presence of the barrier.

As we shall see in the next section, the superluminal ef-
fect can be traced back to the fact that the phase time becomes
negative within the gaps. Morcover, with the transfer matrix
formalism we can numerically calculate the phase time for
both models and quantify the extent and limitations of the ef-
fect. However, in order to gain physical insight into the ques-
tion of why the phase time is negative for frequencies within
the gaps, in Ref. 20 we have introduced a simple superposi-
tion approximation for the density of states, in the presence
of the barrier, that yields a simple explanation to the superiu-
minal effect.

First we note from Eq. (15) that in vacuum 7w Ny(w) =
L/c. Therefore, the sign of 7, is determined by the diffe-
rence between N(w) and L/c. It is clear that N(w) should
also scale with L so that the difference N(w) — L/c should
depend only on the width d of the barrier, remaining finite in
the limit L = o00. Thus, the approximation consists in assum-
ing that the density of states, for an infinite system (L — o0)
in the presence of a barrier of finite width d, is also given
by Eqg. (15) with L replaced by d. In this way, one obtains
that 7N (w) = (L - d)/c + d/(dw/dx) for frequencics out-
side the gaps, and 7N (w) = (L —d)/c for frequencies within
the gaps. Therefore, the phase time 7, can be expressed as

dw"l

d
T‘(d,w)=—z+d a—’; , (18)
for frequencies outside the gaps, and
d .
T¢(de) = "';, ('9)

for frequencies within the gaps. In the regions of normal dis-
persion outside the gaps, dw/dx < c. Therefore, this approx-
imation leads to the interesting conclusion that 7, should al-
ways be positive outside the gaps and always negative inside
the gaps.

Now, using Eqs. (5) and (10) we can write the phase ¢,
of the wransmission amplitude as

¢ (d,w) = ~w dfc+ a(d,w), (20)

where a(d, W) is the phase of 1/(M11 + M22 - M12 - sz).
and M;; are the elements of the transfer matrix M, (w). Then
the phase time 7, = d¢; /dw can be written as
d  da{d,w)
T‘(d,w) = --c-+—-—d—w-—. 21
One can see that this expression is similar to Eqs. (18)
and (19). Hence, the superposition procedure described
above amounts to take
da(d,w) dw|™?
A pd|e—
~a]

i (22)

da, /050
1804 " ju,=20 ]
o, ;
1004 5 4

FIGURE 2. Transmission phase time, 7, = d¢/dw as a function
of frequency, for model (a), using w,/wp = 2 and ¥/wo = 0, for
a barrier of width d = 5.0c/wy. The dotted lines correspond to
the superposition approximation, Eqgs. (18) and (19), and the solid
lines correspond to the exact calculation of the transmission ampli-
tude, Eq. (5).

o/ o,

FIGURE 3. Transmission phase time, T4 = d¢p/dw as a function of
frequency, for model (b), for a barrier of width d == 5do. The values
of the indeces of refraction are n; = 1.5 and n; = 2.8. The dot-
ted lines correspond to the superposition approximation, Egs. (18)
and (19), and the solid lines correspond to the exact calculation of
the transmission amplitude, Eq. (5).

for frequencies outside the gaps, and

___dalew) =~ 0,
for frequencies within the gaps.

In Ref. 20, we compared the exact and the approximated
expressions for the phase time and we have found that the lat-
ter holds better as the barrier becomes wider. Here, in Figs. 2
and 3, we show the comparison between these expressions
for a case with intermediate values of the barrier width. From
these Figures we see that the agreement is excellent as far as
obtaining the negative values of the phase time for frequen-
cies within the gap. The oscillations of the phase time for
frequencies outside the gap in the exact case, of course, can-
not be described by the superposition approximation since
those oscillations are Fabry-Perot-like interferences due to
the finiteness of the barrier.

. The general conclusion, thercfore, is that as the width
of the barrier is increased, the results of the superposition

(23)
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procedure and the exact ones approach each other, yield-
ing 7, & —d/c in the gaps (the analog of the Hartman ef-
fect [23]). As mentioned, in the next section we shall show
that a negative 7, for frequencies in the gap essentially ac-
counts for superhumninal transmission, especially for wide
barriers. However, we shall also show that when the barrier
becomes oo wide, the transmission turns back to be sublu-
minul again.

4. Superluminal transmission of
electromagnetic pulses

In this section we show that that within the stationary-phase
approximation the phase time 7, is equal to the time delay
between the peak of the tunneling pulse and the peak of the
unimpeded one. Then, we shall see that superluminal trans-
mission occurs for 7, < 0, and according to last section this
condition is satisfied for frequencies within the gap of thick
enough barriers. Therefore, superluminal tunneling will be
allowed under the following conditions:

i) The main frequency contributions of the incident pulse
must lie within the frequency gap of the barrier.

ii) The barrier must be sufficiently wide.

We end this section by comparing the results of the
stationwry-phase approximation with exact (numerical) cal-
culations using the two models described before; we shall
see that if the barrier becomes too wide, the transmission be-
comes subluminal again.

Let us start by going back to Eq. (8), the equation for the
transmitted field. In this equation our basic assumption is that
the main frequency contributions of the incident field, Ey(w),
lie within the frequency range of a transmission gap. This will
be possible for pulses which are frequency-limited [3]. Ne-
vertheless, any field with a well-defined front edge, as well
as the most common idealizations such as a gaussian wave
packet, have “long tails” of frequency components lying out-
side the gap. To be specific, let us consider a gaussian pulse.
That is, the incident field is a pulse of duration 7, centered
at - = cf and with central frequency w,, namely,

B t) = E'U e~ (z=et)?[3(erg)? giw, (z~ct)/e_ (24)
In the frequency domain we can write
. o0
E(e,1) = o / duw Ey(w)e@==etle, (25
27 J o
with the function E;(w) given by
. T, EP —lw—w Vi3
Eo(w) = -\-°/—2_;"—e (w=w)r’f2, (26)
From Eq. (8) we find that we can safely assume that con-
dition (#) above is satisfied whenever the product T'(w) By (w)
is much larger for frequencies inside the gap than for frequen-

cies outside of it. However, one must keep in mind that this
cannot be true for arbitrarily wide barrier because then T'(w)

becomes exponentially smaller (inside the gap) as the gap be-
comes wider.

In- the stationary-phase approximation one keeps, in
Eq. (8), only the lowest-order terms in a Taylor expansion
of the phase ¢,(w) [¢f Eqs. (20)-and (23)] and up to the
second-order ones in the amplitude T'(w) of the transmission
amplitude. The Taylor expansion is made around the central
frequency w, of the pulse and one assumes that w, + 7}
lies well within the gap. Hence, the wansmitted puise can be
approximated as,

E,(z,t)~ EMT(w,) - le=ct=d'?/3er,)?
. xeiwelzmet=d)/e (7)

That is, the transmitted pulse is also a gaussian packet of
duration 7, = /72 — ArZ, and centered at z = c¢+d'. Here

d= -(:% = —c—r‘(wc), (28)
UG
and
e,
At = T(w,) d? . 29)

We have further assumed that the central frequency w,. of the
pulse is chosen at the minimum of the transmission gap, that
is, dT /dwl.,, = 0. Notc that the transmitted pulse is shorter in
duration than the incident one; this is in agreement with ex-
perimental results [2] and earlier theoretical estimates {19].

Comparing Eq. (27) with the ekprcssion of the incident
pulse, Eq. (24), one finds that the transmitted pulse has also a
gaussian shape, traveling at speed ¢, with its peak going at a
distance d’ from the peak of the unimpeded incident gaussian
packet. Thus for 7,(w,) > 4}, one has d' < 0, and the peak of
the transmitted pulse goes behind the peak of the unimpeded
one (subluminal), while for 14,(wc) < 0,onehas d' > 0,
and the peak of the transmitted pulse goes ahead (superlumi-
nal). Because of the factor T'(w,) in Eq. (27), the intensity
of the transmitted pulse is much smaller than the intensity of
the incident one. This observation, in addition to the fact that
the pulse becomes shorter, is essential for reconciling the fact
that the transmission is causal notwithstanding the peak of the
transmitted pulse lics ahead. We return to this point below.

In conclusion, the stationary-phase approximation pre-
dicts superluminal transmission whenever the -phase ti-
me 7,(w,) < 0, and according to the discussion in the last
section, 7,{w,) < 0 whenever the presence of the barrier
accounts for a decrease in the density of states for frequen-
cies w,. within the gap. Nevertheless, this conclusion is based
in the validity of Taylor expansions, and these might become
questionable for frequencies around the edges of the trans-
mission gaps. Therefore, in order to check the more general
validity of the above conclusion, we now proceed to perform
a direct numerical determination of d' and Ar,.

InFigs. 4 and 5 we plot the distance d' between the peaks
of the transmitted pulse and a freely traveling one, as a func-
tion of d, for the two models («) and (b), and for a specific
choice of the mode! parameters. As stated above, this distance
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FIGURE 4. Calculated distance between the peak of a transmit-
ted puise und the peak of a freely traveling one as a function
of the width d of the barrier, for model (a) using w,/wy = 2
and /wp = 0.01. The incident pulse is a gaussian function with
central frequency w./wy = 1.5 and duration wer = 15. [n the
figure “stationary-phase™ refers to the stationary phase approxima-
tion, and “numerical” refers to direct numerical calculation of the
distances between the peaks.

dwfc

FIGURE 5. Caleulated distance between the peak of a transmitted
pulse und the peak of a freely traveling one as a function of the
number IV of bilayers in barrier, for model (b) using n, = 1.5
und ny = 2.8. The incident pulse is a gaussian function with cen-
tral frequency w,./wo = 0.72443 and duration wer = 50. In the
figure “stationary-phase” refers to the stationary phase approxima-
tion, and “numerical” refers to direct numerical calculation of the
distances hetween the peaks.

is obtained directly from the numerical, otherwise exact,
cvaluation of the transmitted field given in Eq. (8). In these
Figures we also plot d' as a function of d as taken from
Eq. (28), for the same choice of model parameters. One can
see that the agreement between the two calculations is quite
close, within a certain range of values of d, yielding support
to the validity of the expression given in Eq. (28), for ¢’ in
stationary-phase approximation. A very interesting feature in
these Figures is that superluminal transmission occurs up to
a given value of d and then it tends to become subluminal
again. Thatis; as d becomes larger, the position of the peak of
the transmitted pulse starts to recede. The reason for this be-
havior is that for very wide barriers the main frequency com-
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FIGURE 6. Snapshots of a freely traveling pulse and two transmit-
ted puises for different widths of the barrier. The barrier and the
incident pulse correspond to those of Fig. 4. The magnification of
each pulse is indicated in the Figure. Note how for d = 10¢/wq
the transmission is still superluminal while for d = 13c/wo itis
(again) subluminal,

ponents of the incident pulse inside the gaps are so strongly
suppressed that the contribution to the transmitted pulse of
the frequency tails outside the gaps become as important as
the ones inside. Therefore, the failure of Eq. (28) to describe
the behavior of the spatial shift d' of the transmitted pulse
for such wide barriers, comes from the fact that for those
barriers condition (i) is no longer satisfied. That is, the pro-
duct T'(w) Ey(w) is no longer larger for frequencies inside the
gaps than for frequencies outside. In order to illustrate the be-
havior of these pulses which go through very wide barriers
we show, in Fig. 6, two snapshots of the transmitted pulse for
two different values of d, one superluminal and the other sub-
luminal. The calculations are done for the dissipative medium
of model (a) with a specific choice of model parameters. In
the subluminal case the transmitted field appears so distorted
that it can hardly be called a “pulse” since its frequency com-
ponents outside the gap are now the dominant ones.

We have also numerically verified that the transmitted
pulse is shorter than the incident one for both models (a)
and (b). In Figs. 7 and 8 we compare the results of these cal-
culations with the formula for At given by Eq. (29) and with
a direct numerical evaluation of the width of the transmitted
pulses. The agreement between these results, again, is only
valid up to a certain value of d, as can clearly be seen in both
Figures. The reason is the same as before, that is, once the fre-
quency components of the incident field outside the gap begin
to contribute significantly to the pulse shape, the transmission
is no longer superluminal and the simple arguments and ex-
pressions used above cease to be valid. Nevertheless, besides
its connection with superluminal transmission, the most im-
portant aspect of the narrowing of the transmitted pulse, is
that it can be seen as a direct consequence of causality.

About causality, we have shown that it-is not violated,
simply because the transmitted fields are obtained from ex-
pressions that are causal by construction, [¢f. Eq. (2)]. How-
ever, we find worthwhile to illustrate, in a more intuitive fa-
shion, that causality is preserved regardless of the fact that the
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FiGuRre 7. Time duration 7, of the transmitted pulse as a function
of the width « of the basrier for model (a), using the parameers of
Fig. 4. The values of 7, are scaled with the value 7 of the incident
pulse. “Stationary-phase” refers to the calculation with the station-
ary phase approximation, see Eq. (29), while “numerical” refers to
the exuct numerical evaluation of the transmitted pulse.

e 2z 4 & & 10 1 4

FiGuige: 8. Time duration 7, of the transmitted pulse as a function
of the number NV of bilayers in the barrier for model (b}, using the
purameters of Fig. 5. The values of 7, are scaled with the value 7
of the incident pulse. “Stationary-phase™ refers to the calculation
with the stationary phase approximation, see Eq. (29), while “au-
merical" refers to the exact numerical evaluation of the transmitted
pulse. ‘

peuk of the transmitted pulse lies ahead. As a consequence
of causalpropagation, it must be obeyed that the intensity of
the transmitted pulse, at a given position z > d, integrated
from ¢’ = —oo to the observation time ¢ is smaller than the
corresponding integrated intensity of a freely traveling pulse,
that is,

1 D t e
[ il s / & |E@ P, 6o
- -0

One can easily check that, at least in model (a), this inequality
is automatically satisfied, independently of whether the peak
of the transmitted pulse is ahead or not of the unimpeded one.
But-one can also check that if the duration 7, of the transmit-
ted pulse were equal or larger than the duration 7, of the inci-
dent-pulse, then Eq. (30) would not be satisfied and causality

would be violated. Therefore, the shortening of the transmit-
ted pulses observed in Spielmann et al. experiments [2], is a
consequence of causality.

It is also interesting to notice that for transmission out-
side the gaps it is not true that, for given z and ¢, E,(z,t)
is always smaller than E,(z,t). Therefore, it is crucial that
in such a case the peak of the traveling pulse does not move
ahead of the freely traveling one, otherwise the causal con-
dition [Eq. (30)] would not be satisfied. This is prevented by
the fact that outside the gaps the phase time is always posi-
tive, yielding transmitted pulses with peaks lagging the peak
of the freely traveling ones.

We recall here the point of view put forward by Heitmann
and Nimtz [21] that Einstein causality, namely the statement
that no signal can travel faster than the speed of light in vac-
uum, cannot be veritied in the type of experiments discussed
here. Their point being that the pulses produced in the labo-
ratory, as well as idealizations such as gaussian pulses, do not
have well defined fronts. It is known that Einstein causality
is a consequence of causality, in the sense that causes cannot
precede effects, ¢f. Egs. (1) and (2), and Lorentz invariance
of Maxwell equations [1]). In this regard, we have certainly
only verified the latter statement of causality with Eq. (30).

5. Final Remarks

In this article we have studied the conditions for the oc-
currence of superluminal transmission of plane-wave light
pulses through 1D opaque barriers. By superluminal we un-
derstand the fact that the peak of the transmitted pulse is
ahead of the peak of a freely traveling pulse unimpeded by
the barrier. We have shown that this behavior is quite generic
to any barrier independent of the specific properties of the
material or materials it is made of. More important, we have
found that the main requirement for superluminal propa-
gation is that the frequency bandwidth of the pulse should
be composed by frequencies in which the presence of the
barrier yields a decrease in the density of states. This leads
one to conclude that the best conditions for this to happen
is when the density of states of the corresponding boundless
material or material system which composes the barrier is
already null, like in the frequency regions known as trans-
parency gaps. With this in mind, we propose an extremely
crude superposition approximation for the density of states
of the system in the presence of the barrier by assuming that
the local density of states in the barrier region scales with
the width of the barrier in the same way as in the boundless
system. Then, to test the fairness of this approximation we
worked out in detail the exact calculation of the density of
states, as a function of frequency, for two specific model sys-
tems with barriers made of:

i) A dissipationless material with a lorentzian resonance

in its dielectric response.
i} A finite number of bilayers of loss free materials with
a large contrast in their indexes of refraction.
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FIGURE 9. Transmission phase time, 7, = d¢/dw as a function of frequency, for model (a), using wy/we = 2, a barrier of width

d = 5.0¢f/wg, and 0) 7/wy = 1073, b) y/wy = 0.1, ¢} Y/wy =

1, and d) 7/wy = 10, Note that as the dissipation is increased the

resonance line is widder and this affects the behavior of the phase time in the transmission gap.

This last barrier system was used by Spielmann er al. [2] to
perform measurements of the tunneling time of light pulses.
We found out, that although the fine structure in the change
in the density of states due to the presence of the barrier is
not well reproduced by the superposition approximation, the
main general conclusions derived from it about superluminal

transmission in wide barriers, hold out correctly.
For thin barriers the superposition approximation ob-

viously fails and the transmission of pulses with a frequency
bandwidth comprised within the transmission gaps, instead
of kecping being superluminal, becomes subluminal again.
The critical barrier width between superluminal and sub-
luminal transmission is determined by a width such that the
density of states in the frequency gap is not altered by the
presence of the barrier. We showed all this in the specific
models mentioned above using the stationary-phase approxi-
mation for the description of the pulse transmission. Then we
check the validity of the stationary-phase approximation by
performing exact calculations of the time delay between the
pulse arrival of the pulse which tunnels through the barrier
and the unimpeded one. We conclude that the results for the
time delay between pulses derived from the stationary-phase
approximation are quite correct when the width of the barrier
is not too thick. Nevertheless, we also show that in the case

of very thick barriers

i) The distortion of the puise shape is so strong, that it
becomes difficult to asses a peak displacement to such
u pulse.

i) The pulse transmission becomes subluminal again, due
to the role played by the frequency “tails” of the inci-
dent pulse.

We have also analyzed the narrowing in the duration of
the superluminal transmitted pulse and have argued that be-
sides previous predictions [19] and the experimentally veri-
fied account of this phenomenon, it is also a direct conse-
quence of very general causality requirements.

Finally, we have calculated the effects of dissipation
in the superluminal effect for the case of model (a), [cf.
Eq. (I11)]. The first aspect to keep in mind is that as the dis-
sipation becomes different from zero, strictly speaking, the
transmission gap is no longer a gap, even for an infinite sys-
tem; of course, if the dissipation is small there still exists a
very low transmission in the gap region and the superluminal
transmission still occurs. To be precise, we have studied the
effect of dissipation by varying the parameter «/uw, from a
value of 10~ up to 10. In Fig. 9 we show the transmission
phase time 7, for different values of «v/w, keeping the other
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FIGURE 10, Snapshots of a freely traveling pulse and transmitted

pulses for different values of the dissipation coefficient «y/wyq.

model purameters fixed, w,/wy = 2, dwg/c = 5. Note that,
as the dissipation is increased, the:superposition approx-
imation is less valid because the resonance line becomes
wider (i.e. around w/wp). For the same reason, the statio-
nary phase approximation begins to break down as «y/w, in-
creases. We can, however, calculate numerically the trans-
mission of .a pulse and assess the robustness or not of the
phenomenon. In Fig. 10 we show snapshots of transmitted
pulses for different values of the dissipation parameter. We
tind that up ov/w, = 0.1 the peak of the transmitted pulse is
still ahead of the peak of a freely traveling one, essentially
the same distance as in the case of no dissipation. For large
values of the dissipation, say v/w, = 10, first, the gap dis-
appears and the transmission coefficient is almost indepen-
dent of the frequency; thus, the pulse passes through a region

where the dielectric function is almost constant yiclding a
transmitted pulse with no superluminal effect but with larger
intensity than in the case of no dissipation. The most inter-
esting case is when the dissipation coefficient is in the in-
termediate regime, namely «y/w, = 1. In this situation, as we
can see from Fig. 9c, neither the superposition approximation
nor the stationary-phase approximation can be used. How-
ever, one finds from the exact calculation that the transmitted
pulse is still superluminal and, because of the large value of
the dissipation, its intensity is higher than in the dissipation-
less case: an additional result is that the central frequency of
the transmitted pulse is shifted from the corresponding value
of the incident frequency. This latter case deserves a more
extensive study but it is out of the scope of the present work.

We close this section by remarking that although the
above-mentioned tunneling experiments which measure the
peak velocity and the pulse duration of the transmitted pulse
may be fully interpreted and explained within causal clas-
sical electrodynamics, there are still many others questions,
such as group, front and energy velocities [24), experimen-
tally accessible and verifiable, whose full understanding and
elucidation deserves further attention.
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