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The refraction of p-polarized light at a metal surface leads,
under certain circumstances, to a large peak in the spatial distribution
of the normal component of the electric field near the surface. The ori-
gin of this peak Is explained both in terms of a classical corresponden-
ce and in terms of a theory based on the non-local dielectric response of
the metal surface. The significance of the large magnitude and rapid va-
riation of the surface electric field in exciting photoelectrons from
surface states is discussed. ’

A refragdo de luz p-polarizada em uma superficie metalica leva,
sob certas clrcunstancias, a um grande pico na distribuigao espacial da
componente normal do campo elétrico perto da superficie. A origem desse
pico € explicada tanto em termos de uma correspondéncia classica quanto
em termos de uma teoria baseada na resposta dielétrica nao-local da su-
perficie do metal. A relevincia da grande magnitude e da ripida variagdo
do campo elétrico na superficie na excitagao de fotoelétrons de estados
da superficie & discutida,

Photoemission from surface states of metals as a function of
the frequency of light has generated considerable interest and contro-
versy in recent times. In this paper we study the refraction of p-pola-
rized light at a metal surface to see what influence refraction has on
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the process of photoexcitation. We conclude that the reflection and re-
fraction of light can help us understand and interpret correctly certaln
intriguing aspects of the experimental photoemission data, especially
those regarding the frequency dependence.

The basic difference between the reflection of g~polarized
light and p-polarized light by a dielectric medium lies in the differen-
ce of boundary conditions at the reflecting surface. Whereas the compo-
nents of the electric field parallel to the surface are continuousacross
the boundary, it is the component of the displacement field normal to the
surface which must be continuous. |f the dielectric medium can be repre-
sented adequately by a local and isotropic but spatially varying dialec-
tric constant

em(z) E® (3) = constant, A > a, (1)
N
where A is the wavelength of light and a is a length characterizing the
diffuseness of the surface. Here we have made use of the translational
invariance of the problem in the xy-plane to Fourier-transform all fields
in that plane and in time, so that

B - (@) @ 0t (2)
, W

where u stands for any Cartesian component, o = ix + Jy, @ =(w/c) Sin o,
= (2n/2) Sin 6., and 6, is the angle of incidence. Equation (1) shows
the s-component of the electric field for p-polarized light will be sin-
gutar If the local dielectric constant (assumed real) vanishes. This fe-
ature of light propagation in an inhomogeneois dielectric medium is well
-known in classical electrodynamics!, It is also clear! that the presu-
med singularity of Ez(z) will be rounded to a peak when one recognizes
the fact that ¢ (z) is in general complex and not real. Figure 1 shows
the spatial variatlon of the normal component of the electric field near
a metal surface in a idealized model calculation where the metal occupies
the half-space z< 0, and its dielectric response is assumed to be given
by the function ¢ (z) =1 - 4n g2 ng (2) /mo?, ny(a) being the local elec-
tron density. We conslder a simple model where ng(z) = ng, thebulk elec-
tron density, for z § —a/2, and it goes linearly tozero over the region
-&4/2¢ 3¢ a/2. tn this idealized problen, ew(z) will vanish in the sur-
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face region, |z| < a/2, provided w is below the bulk plasma frequency
= (bwn, e2/m)1/2, For the calculation shown in Fig. 1, we have choseng
= wp/v’f, ei = w/h, and all field have been expressed relative to the am-
plitude Eo of the incident electric field of light, for the sake of con-
venience.

The purpose of this paper is to explore the modification of the
classical singularity in E®(3) when one takes into account recent ideas
about the transverse dielectric response of a metal surface. Wealso wish
to point out how our results may be used profitably to understand cer-
tain aspects of recent photoemission data, in the direction of the sur-
face normal, for emission from surface sensitive electronic features, e.
g., surface states. In the presence of a real surface, Eq.(1) must be mo-
dified in two important respects. The dielectric response is given by a
nonlocal tensor2-5 which, after appropriate Fourier transformations, can
be expressed as ?(z,z') becomes a diagonal tensor which, however, is ani-
sotropic6, i.e.,

e (z,z") = i (z,z’) # 22 (z,2") .

P00 &0,0 %00

In the long-wavelength 1limit, then, the boundary condition becomes a
straightforward generalization of Eq. (1), viz.

Ie" (2,2') E*  (2')ds" =constant. (3

3-»0,«» M,m

This integral condition is easily recast in terms of the conductivity
tensor defined through

(2,8') = 8(z,2") T + (bni/w) T (z,z") ,
w

) 3, W 3:

and the vector potential A(@>,t) where

(2) =22 % (3) .

E
0 ¢ Qo

We choose a gauge where the scalar potential #(>,t) identically vanishes,
and descriptions in terms of the electric field and the vector potential
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Fig. | - Plots of the spatial variation of the real part (dashed curve)
and the absolute magnitude (solid curve) of the normal component of the
electric field of p-polarized light on reflection from a mode! semi-in-
finite system characterized by a local dielectric response varying line-
arly in the surface region. The dielectric constant is assumed tobe cm(s)
=1 - w?/w? for 2% ~a/2; cw(x) =1 - 2/6? 1/2 - 8/a, for |z| < a/2;
and cm(s) = 1 for 5 2 a/2. The frequency s chosen to be w = w_//2,while
61: = angle of incidence = n/hk, Also shown as the dash-dotted curve is the
z-dependence of the magnitude of the electric field component parallel to
the surface in the same problem. All electric fields are expressed rela-
tive to £y, the amplitude of the electric field of incident light.




are equivalent. To evaluate the constant in Eq.(3), we imagine a point 2
inside the metal far from the surface (z=0) and yet |Z]| < <, such that
for z.f, Z, the electric field assumes its bulk form, i.e., it describes
a wave transmitted into the bulk. In this region the dielectric tensor
must be Isotropic®~7 and short-ranged ¥, and will lead to the long-wave~
length dielectric constant of the bulk, £(0,u) when integrated over one
of Its variables. Taking advantage of the short-ranged nature of the non
-local résponse, we arrive at the boundary condition derived by Feibel-
man, 3 '

A;(z) +% Jdu (z,3") A;(z')dz' = e{0,w) A:(Z) . (4)

@O,w

Here we have suppressed the momentum argument of the vector potential,
3+0, for simplicity. )

Instead of solving the integral equation (4) numerically for
model potentials describing the metal, as was done in previous ~work *:5,
we shall solve the the equation approximately in an attempt to underst-
and how the nature of the classical singularity in 43(z) changes in the
presence of a real surface. To this end we assume that the metal can be
represented by a semi-infinite square well, i.e., that its electrons may
be regarded as non-interacting moving quantum-mechanically in the poten-
tial V(r) = V(z) = -Vy 6(-2). Physically this means that we ignore crys-
tallinity of the solid and regard the metal as a semi-infinite jellium,
with the boundary condition of specular reflection at the surface, Also
in the conductivity tensor, this implies using the Random - Phase Appro-
ximation (RPA)® in treating the electron-electron interaction. Electrons
populate all states of the well up to the Fermi energy EF’ and the bulk
electron density n, = kp3/3"2 can be expressed in terms of the Fermi mo=-
men tum XF' The work function of the metal is given by ¢ = Vv - Epgs while
the long-wave-length dielectric function assumes the familiar forme(0,w)
=] - mpzlm2 in terms of the bulk plasma frequency. It is convenient to
express the vector potential in Eq. (4) in dimensionless form, elther by
taking its ratio with A:(Z) or with A, the amplitude of the vector po-
tential associated with the incident wave. We define the dimensionless
functions
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Zw(z) - A:(z)/Az(Z) . (5a)

and

X (a) = 42(a)/a, . (5b)

The former function goes to unity deep into the bulk, Zm(z + o) = ],
while the latter is more physical in the sense that it is related to the
amplitude for photoexcitation. Eq. (4) shows that

Zw(z) + -‘-’% I **  (z,s') Xw(z')dz' = (1 -wpzlmz). (6a)

5-»0,'»

and
X () =4,(2) X (2) . (6b)
We solve Eq. (6a) approximately by assuming that zw(z') is

smooth and varies weakly over the range of non-locality of o‘"(z,z') .
Then the function can be evaluated at an9 convenient - point over the

range of non-locality of conductivity, and taken out of the integral sign.

The components of the relevant conductivity tensor for the square well
model have been worked out with - in the RPA in a previous paper °, where
it is shown that

in_(2) e2 N
35 ' d ''- __0______ .
| o () —— + 10, (s (7a)
\ Z n, a? .
ow(z) = — F (a) (7b)

ie Yy 0) {2 6% (s,0; n
wn? PRy ?i f(cig) ¢"( ) {az (2,0 € ¥ w)

¢ _(z)

K

z o (8) - 6" (5,055, + ) = - 3= G¥ (2,05 €) ¢, (a)

+ 3 (z) 3¢, (a)
+ G (a,O;eK) —y—*6 (o;z;eK - Bw) - -
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s - . 3¢, (=)
~57 G (t).::;e:'< - Auw) ¢K(z) - ¢ (0,s; eK) —5—+

+g‘;’0-(0.8; e) ¢.(2)} . (7¢)
In the last equation, f(e, ) stands for the Fermi occupation function of
an electron of momentum fzfn the xzy-plane and quantum number x formotion
along z, and Gt represent one-dimensidhal Green's functions of the semi~
-infinite square well probelm with the appropriate boundary conditions of
outgoing or incoming waves at Infinity. The dimensionless function Fm(s)
has been introduced to describe the shape of Aaw(z) and its real and ima-
ginary parts are plotted for certain choices of & in Ref.6. The approxi-
mate solution of the integral equation for the vector potential near a

surface Is then
Q1 -upz/bz)
1 - (mpz/uz) (ny(3) /g + Fm(a))

A, (a) = (8)

We can compute A (z) simply by calculating ny(z) and F (z) for the model
w 0 w

of metal discussed above,

Equation (8) shows that the classical singularity in Az(a) can
be recovered in accordance with Eq. (1) by setting Fw(z) = 0, and the
singularity occurs when no(z)/no = mzlupz. This result should be expec~-
ted because Fb(z) measures the anisotropy in the dielectric response cau-
sed by the surface, which is a quantum mechanical effect. The correction
vanishes far from the surface, i.e, Fw(a) = 0 as |z] + =, and physically
it can be related to photon absorption by the surface potential variati-
onb,

Since F“(z) is in general complex, the presence of the surface
in a real calculation has the twin effects of shifting the location of
the singularity and making the vector potential finite everywhere,so that
an ertswhile singularity is now turned into a peak. This behavior is il-
lustrated in Figs. 2 and 3, where we have plotted the real and imaginary
parts of 4 (z) as well as the modulus |4 (2)| against X z when Fiw=5.0
eV. For our calculation we choose Vg = 10.7 eV and ¢ = 4.5 eV, as in Ref,
6, o describe the metal. In this mode], hu, = 9.813 eV, Ky = 1.2748 -1,
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and the expected location of the singularity in F (3) when 2 = 0 is in-
dicated by an arrow in Fig.3. The important feature to note is the peak
in I.Zm(z)! close to the surface, which occurs in close vicinity of the
classical singularity and is, indeed, a manifestation of the latter in
the present calculation. The other peaks in Il—lw(a” arise from Friedel

oscillations in no(z) or from oscillations in Fu(z) as discuss else-
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Fig. 2 - The real part of Em(z) plotted against KFa near the surface by
solving Eq. (8) with Aw = 5.0 eV. The metal Is represented by a semi-in-
finite square well occupying the region = € 0, having a well-depthof 10.7
eV and a work function of 4.5 eV, For this model, hwp = 9,813 eV and KF
= 1.275 81,
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Fig. 3 - Graphs of Im Zw(;:) angd ,Zw(z} versus Kqz for Bw = 5.0 eV {cf.
£q.8) . The parameters describing the metal are given in the caption for
Fig. 2. The vertical arrow denotes the expected location of the classical
singularity.
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whereb, Similar peaks have been found by Feibelman* in a more complete
calculation of Zm(z) close to the surface. We believe that ours is the
first effort to give a physical interpretation to the origin of these sur-
face peaks, and that It is the correct one.

As the frequency of light is increased the classical singulari-
ty (for w< w_) moves toward the interior of the solid. Fig. & shows the
results of our calculation for lﬁw(z)l when Fuw = 6.0 and 7.5 eV, and we
clearly find that the surface peak in Izm(z)l moves across the surface
and into the solids as the frequency is raised. Once again, vertical
arrows in the figure indicate the expected location of the singularity
if surface-induced quantum effects are ignored. Finally in Fig.5,we show
results of calculation based on Eq. (8) when ® exceeds w_ and the clas-
sical singularity is no longer expected. For Aw = 10 eV (r\ﬁlﬂ ), the light
field in seen to penetrate a great distance into the solid, and the peak
near the surface has all but disappeared. For fiw = 12.5 eV, however, there
appears to be a prominent peak in IA (2) | inside the solid ~ 2k, ~1 from
the surface. This peak occurs because of Friedel-type oscillatlons in ng
(2) in Eq. (8). Its location is essentially frequency-independent Inour
calculation, while its strength rises at first with frequency when w3 w p’
but then falls sharply. In the rest of the paper we confine our attention
to the frequency region w > wp.

We next try to assess the reality and physical significance of
the peak in lﬁw(z)l close to the surface with the help of the following
argument, The rapid variation of the magnitude of the normal component of
the electric field near a metal surface arises from refraction through
the boundary condition of Eq. (3). The large magnitude and rapid varia-
tion of IZ:(B)I at the surface suggest that refraction of light may, un-
der certain circumstances, lead to an enhancement of coupling of light
to surface electronic features, e.q., surface states or adsorbate energy
levels. The perturbing Hamiltonian produced by tight and responsible for
photoemission is known to be

> R, .3 3] ~tut
Hpert - ZnLc [.Za’w(z) et Ka’m(x).p] Pl (9)
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Fig. & ~ Plots of the absolute magnitude of Zw(z) against K.z for {a} Fis
= 6.0 eV and (b) Mw = 7.5 eV obtained by solving Eq. (8). Parameters of
the metal are given in the caption for Fig. 2, and vertical arrows shown
in this figure indicate the expected location of the classical singula-

rity.
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Fig. 5§ - Plots of }Ew(z)é versus Koz for {a) fw = 10.0 eV and (b) A =
12.5 eV, both greater than the plasmon enargy hmp = 9.813 eV. See the
caption for Fig. 2 for the parameters describing the metal in the calcu-
lation,
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For photoemission in the direction of the surface normal, the amplitude
(i.e., the square root of the differential cross section) will depend on
the matrix element of pz Az(:z)/Ao between the initial and final electro-
nic state-wave functions, t.e., it will depend on the matrix of the quan-
tity Zw(z) defined In Eq.(5b). Recalling the formula of Eq.(6b) and the
results expressed in Figs. 2-5, it is plausible to argue that if there
is a peak in Zw(z) occuring within one or two Fermi wavelengths of ~ the
surface, then it will couple strongly to a surface state. Arguing in the
same spirit, it also appears likely that the height of the surface peak
in |Zm(z)|wlll be a crude measure of the strength of photoemission from
the surface state, its square being relate to the differential photoemis-
sion cross section along the surface normal. Thus from our calculated
surface peaks in ]Zw(x)l, we can draw certain general conclusions about
photoemission from surface state, provided we can determine |Zu(z)l.
Note that our conclusions will not be based on a self-consistent theory
where refraction of light should occur at a metal surface having a sur-
face state, Rather it will be more in the spirit of the early theory of
surface photoelectric effect®»? where one considers a surface but ne-
glects refraction entirely, Here we take refraction at jellium surface
into account and use it to predict the strength of normal photoemission
from a surface state. The determination of IEN(Z)I inthe long wavelength
limit posess no great difficulty. It follows from Eqs. (4) and (5b) that

A (z=) = c(0,0) 4,(2) , (10)

i.e., the boundary conditions is the same as the classical boundary con-
dition except that the surface here is diffuse rather than sharp. This
implies that IZN(ZH will be given correctly by the magnitude of the z-
-component of the A-field just inside the solid for the classical pro-
blem of refraction of p-polarized light at an ideally sharp reflecting
surface. (The component of Im(z) parallel to the surface is of course
knorwn to be constant across it.) In Fig. 6, we have plotted IZM(Z) | ver-
sus m/mp by solvirg the problem of refraction at a sharp surface separa-
ting vacuum from jellium of dielectric constant €(0,w). The angle of in-
cidence 61: has been chosen to be 45°, Using this result in conjunction
with our previous calculation for |.71m(s)|, for any frequency. Figure 7
shows the variation of ngakl the strength of the surface peak in ﬁw(s)l,
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Fig. 6 - Absolute magnitude of A:(O-) , the normal component of the vector
potential just inside the surface, expressed relative to the amplitude
Aq of the Incident vector potential and plotted against w/w_in the re-
fraction of p-polarized light at a sharp boundary (s=0) separating vacuum
(z 2 0) from Jellium (< 0) of dielectric constant e(0,w) = 1 - @ _2/w?.
The angle of Incidence 6, is chosen to be #/k. Eq. (10) shows that this
function should represent 4 (2). (See argument in text).

for any frequency w. Figure 7 shows the variation of]j'mpeak

of w for w$ mp. As argued previously, this curve ought to mirror theva-

|as a function

riation of the amplitude of photoemission in the normal direction, froma
surface state, with the frequency of ligth. It is clear from this figure
that !pr“"
ting that photoemission from a surface state in the normal direction with

| goes precipitously to zero as w approaches “p’ thus sugges~

p-polarized light must be very weak near the plasma frequency. Evidence
for this kind of behavior has been'reported experimentallyl%,11 for pho-
toemission from the surface state of W(100). We therefore, conclude that
the peaks in lﬁw(z)l discussed in this paper and lying close to the sur-
face are indeed real, that they arise from the effect of refraction at a
metal surface, and that they may be of importance in understanding the
frequency dependence of photoemission cross section from surface states
on a metal surface, especially for light frequency close to the plasma
frequency.
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