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ABSTRACT

Limitations in the use of the conventlonal comparison equation
and reference (approximate) potential methods for obtaining solutions to
the Schr¥dinger equation in calculations involving the classical transition
region are reviewed. The origins of these limitations are discussed and a
systematic improved method applicable to real potentials with continuous
derivatives is formulated. As a computational example of the method, a
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details study of the bound-state problem using the Morse potential is presented.
Extension of the method to the many-channel problem is discussed.

RESWMEN

Se resefian las limitaciones en el uso de la ecuacidn de compara
cidén convencional y métodos de potenciales (aproximados) de referencia par:
obtener soluciones de la ecuacidn de Schridinger en c8lculos que consideran
la regidn de transicidn clfsica. Se discuten los orfgenes de estas limita-
ciones y se formula un m8todo sistemitico mejorado aplicable a potenciales
reales con derivadas continuas. Como un ejemplo computacional del método,
se presenta un estudio detallado del problema de estados ligados usando el
potencial de Morse. Se discute la extensidén del métodoal problema de mu-
chos canales.

1. INTRODUCTION

The classic WKBJ approximation to the analytical solution of the
Schrédinger equation has found extensive applications in boundstate and
scattering. problems in diverse fields of physicscl). A variety of
modifications, refinements and extensions intended to overcome its several
drawbacks ({.e., singularities at the classical turning or transition
points, Stokes's phenomena, etc.) have been pmposed(2‘7). These modifica- °
tions generally have been limited to the finite-dimensional case. An
extension of the WKBJ method to the infinite-dimensional case has been
recently reported(s). Foremost among the relatively successful improvements
of the WKBJ theory is the Miller-Good (MG) transfomations(s). It has
given rise to the often cited "comparison method"(s) and to a type of
uniform approximation(g'lo). The general procedure in these approaches is
to neglect the resulting Schwartzian derivatives (SD) term.

In the usual WKBJ method, the original Schridinger equation is
compared to an ordinary-differential equation with constant coefficients.
In the classically forbidden domain the solutions are growing or decaying
exponential functions, while outside this domain they are sinusoidally
varying functions. This procedure excludes from the outset the construction
of a smooth, approximating wavefunction near the turning points since it
makes an abrupt change in this transition region. Further, the solutions
are to be considered in regions far removed from the classical turning
points. We will see that the uniform approximations do not represent the
correct solutions across the transition region accurately enough (see
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Sects. 2 and 3). They have been designed mainly to remove the wavefunction
discontinuity across the classical turning points, the solutions so obtained
being basically asymptotic in chara’cter(m). These are given in terms of
one, or more than one, convenient parameters. In quantal calculations the
relevant parameter is related to Planck's constant (9'11). For the kind of
uniform approximations we shall refer to in this work, the validity of the
semiclassical approximation (where the SD term is neglected) gives rise to
some doubts, mainly in the very-near turning-point regions (see Sec. 2).

To improve the accuracy of -the conventional comparison equation
treatment, two iterative schemes, similar to the familiar perturbation
technique, but differing in character, have been proposed“’n). As much
as we are aware, these improvements have not received extensive applications,
One of these seems appropriately designed for scattering problems (4), and
the other for bound-state problems11), The main objetive of this report
is to present a systematic and simple improvement on the usual comparison
method, encompassing both situations, free from the semiclassical
approximation: the improved compérison equation method (ICEM).

The solution of a system of coupled one-dimensional linear second-
order differential equations is the starting point in several calculations,
both in classical mechanics and nonrelativistic quantum mechanics. It can
be shown by straightforward manipulation that the problem just posed may
be reduced to an equivalent coupled first-order differential equations
system(u). However, when several channels are present and a great
accuracy is required, the method is usually onerous due to the complexity
of the large scale numerical calculations involved. Therefore a limit to
accuracy is imposed for practical reasons. Such is the case in calculations
in the gas-surface interface scattering(ls) and the gas phase scattering
of reactive systems (14). This restriction becomes more critical when
"'closed channels" or "states diffracted into the surface" have to be
included, due to the effect on the scattering matrix elemem:s(ls), or if
the interaction potential does not vary slowly. A close-coupling approach
would therefore seem relatively expensive and one must resort to
gpproximations not readily justifiable and perhaps not valid in some
situations (1s) .

Among the various numerical methods of solution of the
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schrbdinger equation, the finite-element method(m), originally developed
for engineering problems, and imple;nented by Gordon(”) has been used
extensively. It involves dividing the integration region into conveniently
small domains and approximating the correct potential within each domain
by a "reference potential". This reference potential must be so chosen
that the solutions to the reference or "etalon" equation, corresponding to
our homogeneous one, are relatively easy to determine analytically. In
practice the method consists of stepping the interaction at each integration
interval of the resulting set of coupled first-order differential
equations Q7-19) problems requiring great accuracy each interval must
be small enough to guarantee an appropriate approximation of the constant,
linear or quadratic reference potential to the true potential. For further
developments of those approaches during the last ten years, the reader is
referred to Ref. 192 and references therein. A new method to solve the
Schrﬁdinger-iike equation is presented, partly analytically, partly numerically,
free from semiclassical approximations, and without severe restrictions
regarding the way by which the comparison potential adapts to the original
one. :

In section 2 the general formalism upon which the present work
is based is summarized. It is seen in this section that the iterative
approximations within the context of the MG method are better replaced by
a perturbative approach similar in some respects to, but more general than,
the reference potential method(”). As a result, the homogeneous-like
equation becomes an inhomogeneous-like one. In section 3 a standard
technique is used to split this last equation into first-order equations,
Then it is shown that the Gordon method may be formally incorporated within
a more general scheme of comparison equations. Contrasted with the Gordon
method, the distinctive feature of the ICEM is that the reference potential
covers large regions which sometimes may be extended over the entire
integration region. Moreover, it is not limited to approximate potentials
of polynomiai form. In section 4 the ICEM is tested and compared to the
exact analytical results of the bound-state problem for the case of the
Morse potential. In this section some features and applications of this
potential are also discussed. The appplications to many-channel problems,
for which the present scheme is likely to be more beneficial, are




283

discussed in section 5. Finally, in the sixth section, we present a brief
sumary of the method, a discussion of the results and a prognosis for
future investigations. The main conclusion is that the ICEM may be employed
with better accuracy for problems usually considered within the framework
of the conventional uniform treatments. The method advocated here may be
particularly useful for clos-coupling calculations with a higher efficiency
than the reference or approximate-potential method, mainly in many-channel
problems.

2. GENERAL FORMALISM

~ The basic elements of the ICEM can be seen by studying a simple
" example. In order to avoid temminological confusion, throughout this
paper the word method will be utilized to connote techniques that

formulate the bound-state or scattering problem, while the word paocedure
will be applied to. computational algorithms for solving the equations
generated by the methods. To start, the one-dimensional stationary-state
Schrddinger equation is considered. An extension to many-ghaxmel problems
is discussed in Sec 5. Here attention is focused upon the homogeneous-like
equation

Fi+p%mpm)-o . o o))
dx? :
where

wm=%@wm3 , @)

E being the energy of a nonrelativistic particle with mass m moving in the
potential field V(x). It is assumed that p?(x) is real on the real axis,
L.eey V(X) real.

The Gordon approximate-potential method(”) involves writing
Eq. (1) as an inhomogeneous-like equation

Fi+pﬂnhu)-euwu) , (1a)

dxz
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where

P (x) = p*(x) - g(x) , (2a)

contains a potential similar to, but simpler than p?(x). One then seeks
solutions to Eq. (1) via the nontrivial solutions to the homogeneous
differential equation

Efi- . pzcx)]w,cx) - 0 : (1)
dxz

The MG method(s), on the other hand, employs a simultaneous
transformation of the wavefunction and the spatial coordinate. The
following homogeneous-like equation is obtained instead of Eq. (1) (3):

-d_z-— + q? =
qe(t) ¢ (t) = 0 ) (3)
dt? .

where q: (t) denotes a comparison momentum to be conveniently chosen and t
is a function of x to be determined. Once Eq. (3) has been solved, the
solutions to Eq. (1) are obtained from the inverse transformation (see
Egs. (5)).

Instead of following either of the two approaches mentioned above,
they are combined and Eq. (1) is compared to an inhomogeneous-like equation:

F1+q%ﬂpu)'ﬂﬂﬂﬂ , (4

dt?

where q2(t) denotes a general 'reference" or “comparison" momentum whose
properties will be specified later in this section and £(t) is a perturba-
tion-like potential term (see below).

To obtain Eq. (4) a transformation is performed, looking for a
monotonously increasing function t(x) that possesses continuous derivatives
t' = dt/dx, t" = dt/dx?, etc. Following Miller and Good(s), a continuous
and differentiable function x(x) is introduced, to be determined such that
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V(x) = x(x) ¢ (t(x)) . : (5a)
The function x(x) modulates to some extent the amplitude of the new wave-
function. It is thus highly desirable to choose x(x) such that q2(t)
resembles the main features of p?(x) or, similarly, that ¢(T) has

qualitatively the same behavior as the solution y(x) of the original
equation. Substitution of Eq. (5a) into Eq. (1) yields

t'zx[i-:? + t.'zpz(x)]¢ + (t"* + Ztlxl) g% 5 - X"‘b . (48)

This expression converts to the inhomogeneous-like equation (4) if the
coefficient of d¢/dt is set to zero; we thus take

x() =t} , : , ©)
and identify £(t) with
£t) = - Xt , (7a)

which can also be written

£ = Ft i o, o (7b)
- where
" " 2 -
<ty x> -Ef,:- -% [-%1-}2 -2t :x_z (t' 1) , 8)

is the SD expression(3’4).
Instead of trying to solve Eq. (1) directly, an attempt is made
to find solutions to the exactly equivalent equation (4), where

}

px) =t B(t(x)) ) _ (5b)
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and t is given by the nonlinear first-order differential equation

& - gﬁ% : ©

An analytical transformation similar to Eq. (Sb) has been found useful in
investigations of propagation and scattering of electromagnetic and acoustic
waves in continuously layered media(zo) .

The MG transformation yields after comparing Eqs. (1) and (3)

. (10)

dt]’ p?(x) - %—<t; x>
® ®

In applications, the SD temm appearing in Eq. (10) has been customarily
neglected. In this case Eq. (10) reduces itself to the simpler relation-
ship Eq. (9). This procedure has been referred to in the literature by
the terms '‘comparison equation"(s) and "uniform approximation"(g’m). The
name ''comparison equation" originates from the fact that one compares

Eq. (1), whose solutions are unknown, to Eq. (3), where q:(t) is to be
chosen so that the comparison equation possesses simple and analytical
solutions. The name "uniform approximation' means that, after neglecting
the SD term and selecting an appropriate comparison potential, t' can be
made continuous over the entire domain, including the transition regions.
As a result, a smooth wavefunction is obtained across the classical turning
points where the usual WKBJ solutions are singular.

Several questions about the range of validity of the conventional
comparison and uniform treatments arise, The number of available comparison
momenta is greatly restricted by the assumption of negligible SD values.

At any rate, they must be similar to the original momentum p2(x).
Apparently, no known attempts have been made to assess the assumption of
neglecting the SD term resulting from the most utilized comparison
equations, namely, the Airy and Weber equations., The validity of this
approach depends mainly upon the nature of the externally imposed
potential or interparticle potential at hand. Moreover, as will be seen
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in Sec. 3, the values of the neglected term, similar to g(x) in Eq. (1a),
determines the behavior of the wavefunction at the very-near tuming
points regions. Neglecting the SD term in Eq. (10) it would give rise to
serious miscalculations in some problems; such is the case of the
scattering problem at intermediate energies in situations where differences
in the phase-shift values might be significant,

The only manageable situation for which g(x), <.e., the SD term
(see Eq. (18)), can be made exactly zero over a certain finite region for
every potential is for the transformation

p*(x) = cq?(t), (c = constant) .

As simple as it is, there is a case in which this transformation may be
useful. Suppose that the comparison potential is the linear one. The
solutions are given in terms of the well-known Airy functions. It is
always possible to linearize the potential in a conveniently small region
on the x-axis. If one compares the true potential with the linear
potential via the MG transformation outside a singular point of p2(x),
and performs a linearization of the potential in a small region containing
the transition point, it is possible to obtain both smooth solutions over
the entire domain, and exactly zero SD values through the transition
regions. This feature has been recently used to guarantee the validity
of the (numerical) uniform solutions across the turning points in a many-
channel scattering problem(zn. It is worth noting that linearizing the
potential step by step within conveniently small regions, as is done in
Ref. 17, yields directly the Airy functions as solutions to Eq. (3).
Another question stems from the symmetry of the conventional
comparison method. This symmetry means that one could construct ¢(t) out
of v(x) via the inverse transformation of the spatial coordinate
x = x(t) (11). As will be seen later in this section (see the discussion
following Eq. (11)) this symmetrical situation requires a one-to-one
correspondence between the spectra of the Hamilton operators for both
equations: (1) and (3). This requirement introduces a compiication mainly
in bound-state problems. An isospectral correspondence between discrete
eigenvalues does not exist on coinparing, for example, the Weber equation,
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which is -associated with a harmonic oscillator potential, with any other
potential having a finite mmber of bound states (see Sec. 4 for an
example). It means that, in general, one cannot pretend to solve arbitra-
rily any of the two comparison equations by solving the other one for the
entire spectrum. Nevertheless, one must recognize that, from a pragmatic
point of view, this fact has not any importance. The interest in practice
reduces to solving a ndn-directly integrable equation by comparing it with
a simpler one, and usually for a very specific state.

Equation (9) which determines t as a function of x is remarkably
simpler than the corresponding MG equation (10). In turn, this analytical
'siinplicity imposes one requirement: once a comparison potential has been
selected, one must solve the inhomogeneous like Eq. (4), instead of the
homogeneous one, Eq. (3). However, it should be noted that there exist
several methods to deal with inhomogeneous-like equations, whereas the
involved mathematical structure of Eq. (10) is hardly manageable even in
simple situations. Furthermore, it is worthwhile to note that this
apparently disadvantageous situation of the presence of the inhomogeneous
term avoids the problem posed by the symmetry of the conventional method,
since there is not such a symmetry within the ICEM method. If the right
hand side of Eq. (4) is neglected, the present approach reduces to the
conventional one. It is a consequence of the fact that Eq. (10) reduces
to the exact and simple equation (9) after neglecting the SD term.
Whenever a better accuracy is sought two possibilities exist: The first of
these is trying to solve the rather cumbersome Eq. (10) exactly, following -
the MG prescription without modifications (4,11 , in which case the comparison
equation takes the simpler form given by Eq. (3). The second possibility
consists of using the transformation introduced by MG and solving the more
difficult equation (4), determining t from the simpler relationship Eq.
(9). It will be shown in Sec. 5 that the later choice, namely, the ICEM,
is largely more beneficial in many-channel problems. Section 4
illustrates the efficiency of the method advocated in this report in
bound-state problems. The former alternative has been worked out within
the context of iterative schemes (4'11), which are not substantially
different from the familiar perturbation technique.

It should be stressed that deciding which comparison potential
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should be used does not imply that the new spacial coordinate t has been
completely specified as a function of x. From Eq. (5b) t' may be rewritten
as ,

t! = m
Vi (t)

This last expression shows that t is a strictly increasing function of x,
as required, if ¢ and ¢ are real functions. If they are not, one could
still choose a comparison potential such that t' given by Eq. (11) were
always positive. Equations (9) and (11) suggest setting t, congruent with
X where xi desginates the nodes of p?(x) and y?(x), and t those of

q (t) and ¢2(t). This fruitful choice will make t' regular and will avoid
singularities or zeroes for t' upon the additional assumption of continuous
differentiability of the four functions y?, ¢*, p? and q2. It imposes
some restrictions over the comparison equations at our disposal. But
these do not bring major complications as long as the application is
restricted to comparison potentials which have qualitatively the same
behavior as the original one. .

Once a comparison potential resembling the original one has been
chosen, the following prescription allows the determination of t as a
function of x,

For the solution of the first-order differential equation (9) one
needs to fix a constant of integration. -Therefore, without limitation of
generality one may set t = t, at an appropriate fixcd point corresponding
to x = X,, say the location of the first turning point to the left, thus

t x
I |2 () = [ GRS
to Ko
For a simple-turning-point problem the function t will be completely
specified for a certain comparison potential. In problems with more than
one classical turning point, additional constraints must be imposed to fit
the requirement of turning points congruency. It may be achieved by
including n-1 adjustable parameters into the comparison mementa equations,
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where n is the number of classical turning points(lo). These parameters
may be determined from

ti xi
[' le - viry|dat - J E - v ? ax , (12b)
to 'xo .

where u‘.i (xi) correspopds to the ith turning point of the potential. This
last condition is an obvious generalization of Eq. (22) in Ref. 3. It sets
the turning points in one-to-one correspondence. A problem mathematically
similar to this one, the case of two turning points in acoustics and electromagne-
tic theory, has been considered in a number of studiesczz). In the bound-
state problem, Eq. (12b) provides an eigenvalue E for each "'eigenvalue' ¢
of the comparison potential v(t) = (h?/2m)[e - qZ(t)].

Superficially, Eq. (12b) seems to be a basic approximate
relationship. It resembles the Poincaré-Cartan invariant integral of
classical mechanics (23), which does not have an exact analogue in quantum
mechanics. In contrast to the MG treatment, in which Eq. (12b) is obtained
from Eq. (10) as a semiclassical approximation(11) (expansion in h?),
within the present scheme it is an exact relationship; it is obtained from
Eq. (9) and appropriately adjusted to the simple criteria stipulated above.
It must be noticed that the "comparison potential" in Eq. (4) is modified
by a perturbation-like potential temm: % (h#/2m)t' "*<t; x© , which is
missing in Eq. (12b). Within the present scheme, Eq. (4) is not a
legitimate or well-defined physical eigenvalue equation, as is Eq. (1).

The semiclassical approximation used in other approaches replaces Eq. (4)
by the "eigenvalue" equation (3). In the ICEM, solutions to Eq. (1) are
being sought which satisfy prescribed boundary conditions. Whenever one
considers Eq. (1) as an eigenvalue equation, the present scheq\e requires
that it be solved by adjusting appropriate solutions, via t'"%, to the
inhomogeneous like equation (4). Moreover, as will be seen in the next
sectioh, the solutions to Eq. (4) are sought by using acceptable(u)
solutions to the homogeneous-like equation (3) (21). These admissible
solutions are not eigenfunctions but linearly exact independent solutions
of the homogeneous form.

l
s
i
z
!
;
;
;
i
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3. SOLUTION OF THE INHOMOGENBOUS-LIKE SCHRODINGER BQUATION

In this section the advantages of the .ICEM over the approximate
or reference potential, and the comparison equation methods is illustrated.
It is stressed that the ICEM works well within any other technique to solve
the inhomogeneous second-order differential equation.

It is convenient to rewrite Eq. (1) as

TR <l _ 13
o + p2(x) + 2.<t.. x>] Y(x) =5 <t; 09(x) (13a)

Written in this way, Eq. (1) resembles an inhomogeneous equation. The in-
homogeneous driving terms consist of the wavefunction itself multiplied by
the SD expression, which must be computed numerically. Since the SD values
are usually small, the right hand side of Eq. (13a) may be viewed as a
perturbation term. The disadvanfages of introducing this complication is
far out-weighed by the advantages, namely, & greater accuracy and a simpler
equation to determine t = t(x).

Applying the MG transformation given by Eq. (5b) to Eq. (13a),
selecting a comparison potential which satisfies Eq., (9) and employing
Eqs. (12) to determine t(x), y(x) is obtained after solving Eq. (4),
which is rewritten as follows:

v aempm - % 7 t; o4(t) . (13b)
dt?

1f two linearly independent exact solutions, A(t) and B(t), of
the homogeneous form corresponding to Bq. (13b)

[9_‘_ . qz(t)]oo(tj -0 v o (148)
de? '

are easily determined analytically, then the solution to Eq. (;3&), (or
Eq. (13b)), can be facilitated, Among the several methods of constructing
the solution to Eq. (13a), the familiar method of variation of parameters

x
1
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(special method of perturbations) @5) is considered here:

V) = a@AK) + BEBX) (15a)

$(t) = a(t)A(t) + B(t)B(t)

where X(x) = t"; A(t(x)), etc., and ;(x) = a(t(x)), etc. This last
property may be readily vegified di;_‘ectly employing Eqs. (9), (13), (14),
and (15). The quantities A(x) and B(x) can be viewed formally as
independent solutions of the homogeneous form of Eq. (13a):’

[:x:— + P2(x) + 7 <t3 x>]w(x) =0 . | (14b)

2

The constraint
oA + fB = 0 , (16)

will be utilized in this report(”). The reader is referred to a more
general constraint in Sec. 5. From Egs. (13) to (16) the following
fundamental system of _linear, first-order differential equations for the
coefficients a(x) and g(x) is obtained:

a'(x) = - W'[A, BIB(OEMO oA + 8] (17a)
8'(x) = W' [A, BJAGOECO) [aA + B3] , (17b)

where wx[R, ;3] = W.[A, B] is the Wronskian determinant of the reference
solutions, and

8x) = - 3 <ti > . (18)

Equations similar to (17) may be written for the t-dependent coefficients
a{t) and 8(t). The functional x (or t) independence of the Wronskian
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follows from the linear independency of the solutions to the Schrédinger-
type equations., .

Notice that hitherto no ad hoc approximations have been made in
the ICEM, a rigurous' treatment that will be maintained in Sec. 5. Indeed
one could otztain analytical solutions to Eq. (17) only if there was a way
to express A, B and g analytically. In order to achieve this goal, after
finding analytical solutions to the homogeneous-like equation (14a), it
would remain to express t as a function of x. This could be made in
principle from Eqs. (12). However, for most of the interaction potentials,
there is not an elementary way to express t in terms of x, and one must
resort to numerical methods.

Several methods to solve close-coupled equations have been
. developed during the last fifteen years(14’17’19’26). Within a close-
coupling approach, an arbitrary accuracy is supposedly achieved, the primary
limitation arising from practical reasons of saving computer time. Before
ending this section, some general advantages of the ICEM over the
approximate potential methods currently in use in close-coupling calcula-
tions must be emphasized. The discussion will be limited to comparing it
with Gordon's ntethod(17), mainly because the close parallelism between the
methods and because, as it will be seen soon, Gordon's method may be
considered a particular case of our approach.

From a formal point of view, Gordon's approach has severe
restrictions. The rcference potential used in this method may be viewed
as a comparisoﬁ approach to the true potential via a Taylor expansion.
Therefore, it is limited to polynomial expressions. In practice, if one
wants to maintain a simple structure of the comparison equation, the linear
and/or the constant terms are the only ones to be kept in a series
expansion(u) Moreover, boundary co-nditions must be adjusted at each step
of the integration. The inconveniencies of this method result on enormous
computer time consumption, mainly for potentials which vary strongly with
the spatial coordinate,

The above limitations are not found within the present scheme.
The ICEM is an analytical method without severe restrictions, the main
restriction being to set in congruency special points. Nevertheless, it
is amenable to practical approximations which can be adjusted satisfactorily
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whenever a great accuracy is required. The most obvious approximation is
to take into account the SD term only at those regions within which it
contributes substantially. As a rule of thumb, the SD term is mostly
meaningful within the transition regions., In these regions p?(x) and
q(t) both tend to zero. Therefore, the inhomogeneous-like SD term in the
r.h.s. of Egs. (13), which plays the role of g(x) in Eq. (la), determines
the actual behavior of the second-order differential equation and should
not be neglected therein. This point will be illustrated in Section 4.
It should be noticed that the uniform approximations cannot represent the
exact solutions across the tramnsition regions since they neglect the SD
term everywhere.

Another useful approximation parallels Gordon's method. Instead
of limiting the discussion to expanding the true (real) potential in a
Taylor series, a further step is taken to express the true, the comparison
momenta and the new spatial coordinate as infinite series around an
arbitrary point X;: ’

P = I 8y W
n=0

@)= ] bu’

n=0

(19)

v
-

’ «
t(x) = } c“un
n=0

where u = X - Xo. The quantity t' is readily determined from Eq. (9) once
the b, coefficients have been determined. It only requires to evaluate
the t derivatives at x,. Implicit derivation permits evaluation of higher
derivatives at any point. As an example,

e = {001 - e o'} / 28 (e (20)

This procedure was adopted to evaluate minerically the SD function in the
very -near turning-point regions for the case considered in Sec. 4, where
a direct evaluation would cause numerical instabilities. Moreover, this
procedure illustrates how to incorporate Gordon's method and other
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approximate-potential methods whithin the more general ICEM, since the
comparison equation is still Eq. (13b).

4. THE BOUND STATE PROBLEM EXEMPLIFIED

The discussion, wp to this stage, has been general in character.
From the practical point of view, it is highly desirable to have
vanishingly small values for the perturbation-like term, £(t), in a large
integration region(zs). This would result in slowly varying functions for
the variable coefficients. This can be an advantage numerically because
a reasonably large step-length (commonly called h) can be used in the
integration. If the coupling matrix elements of the potential in a close-
coupling approach to the many-channel problem are large, further
approximations may be made. If this is not the case, the SD term plays
the role of the coupling potential and must be carefully evaluated.

To describe accurately the vibrational levels of diatomic
molecules Morse introduced in 1929 the exponential potential (¢7)

V&) = Depl-atx - x)Heml-atx - x)1 - 2}, @)
which sometimes is conveniently written as

Voo = {1 - e [-atx - x1} . (212)

The depth and width parameters D and a are empirically determined, while
x, is the equilibrium distance parameter.

The Morse potential was soon afterwards extended to cover a wide
variety of problems, e.g., neutron-proton scattermgtzs), molecule- sol1d
surface interactions 29), etc. Slightly different versions of it have been
used to model double well potentials (30a,b) and other rather broad
problems like the one considered in Ref. 30c and in the admirable work of
Fernfndez and Castro(%d) | several processes in molecular (30-33) ang
surface physics (34-37) » are suitably described by the Morse potential given
by Eq. (21). The radial Schrddinger equation for the Morse potential is
not exactly solvable analytically, as has been pointed out by ter l-laar(38).
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The one-dimensional analogue and the radial equation have been treated
analytically on several occasions (39'40), almost always to obtain only the
eigenenergies of the anharmonic oscillator, Numerical studies employing
the Morse potential have been done several times to compare the merits of
different approximate procedures of eigenvalue calculation. An analytical
treatment of the one-dimensional bound-state problem for the Morse
potential in terms of exact, normalized, closed form wavefunctions has been
given by Nieto and Simmons (41).

The perpendicular motion of atoms or molecules incident on a
solid surface is often described by a strong repulsive term near or inside
the surface anda long-range attractive part which are well fitted by the
potential given in Eq. (21). Slight modifications of the Morse potential
allows the inclusion of dissociation or similar processe$ (36). It can be
mentioned in passing that the atom (molecule)-solid surface scattering is
a case in which a large number of open and closed.channels must be
incltxied(34’36). Since the one-dimensional uncoupled problem is exactly
solvable, while a strong interaction demands a careful numerical treatment,
the Morse potential is regarded as a good candidate to test the procedure.

For completeness sake, the analytical solution of the
Schrddinger equation for the Morse potential is briefly presented, and the
exact eigenfunctions and eigenvalues for a particular case where there are
only two discrete eigenenergies are determined. With the change of
variable y = exp [-a(x - x;)], the Schrédinger equation

o ] ,
+ k2 - UX) |p(x) =0 ) (22)

dxz

where k? = 2mE/h? and U(x) = 2mV(x)/h?, becomes

a2 ,14d .1 K, _ o y=0 .
dy? ydy a*y* vy

Here D' = ZmD/h?, The substitution y = exp(-yd)yb/ 2g, where b and d are
constants to be determined, gives
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2 b2

—— —

2 2 ! .
yYoE s e1-2ya) SE B4 D g4 . [dz -2.'.])' Fe0. (232)
Jdy? dy y a? a?

Eq. (23a) is not in the most convenient form to take advantage of standard
mathematical information. Setting z = 2yd, and making the definitions

Bsb+1, a=B/2-4d (24)
equation (23a) becomes
[z £ . 6-a2) = - a]p(z) =0 , (23b)
dz? 7
which is Kummer's standard form of the confluent hypergeometric equation(42).

The parameters b and d are determined by means of the relations

b? = - 4k?/a?, d=/"/a (25)
A common pair of linearly independent solutions of equation (23b) are - .
given in terms of the confluent hypergeometric. series of z, M(a, B; z).
This series can be accurately summed up by using either a generalized
Euler transfonnation(43) or the classical and highly practical method of

Padé-Frobenius approxixnants(44). The solutions of Eq. (23b) are the
nonelementary functions (42)
Fi(z) = M(a, B8 2) ' : (26a)
Fo(z) = zl'BM(l +a-B8, 2 - 83 2). (26b)

For the entire range, -»< z<», the first solution becomes a finite
polynomial if o = - n, n = 0,1,2, ... TFrom Eqs. (24), (25) and (26)
the following expression for the eigenenergies is readily derived
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En= - o [f‘zf‘-]’ [Z(d-n) - 1]2 : @n

Since the energy eigenvalues are independent of the choice of
the equilibrium distance parameter, x,, this parameter was arbitrarily
chosen to be unity. Using atomic units throughout and taking for
convenience a = 3, d = 7/3, and m = 1000, we found {from the requirement
that y(y~+=) = 0], that two values of o, namely o = 0 and o = -1 gave rise
to one bound state each. The exact discrete eigenvalues for the Morse
function are then '

E, = -0.4114 eV, : E; = -0.0850 eV.

Before proceeding to solve the foregoing eigenvalue problem
using the ICEM, it should be mentioned that an estimate of the eigenenergy
value can be inferred from the homogeneous-like equation (14a). In spite
of the fact that Eq. (14a) is not a proper eigenvalue equation, the
perturbation-like term which modifies it [see Eq. (13b)] is often small
compared to q%(t) in Eq. (13a). Therefore, an "eigenvalue' for ¢ in °
Eq. (14a) determines a zeroth-order eigenvalue for E in Eq. (12b). The
value of E so obtained may be regarded as a trial value to the energy of
the eigenvalue problem posed by Eq. (1).

A tractable comparison potential is the quadratic form

v(t) =} t? . (28)
This approximation to the true potential gives rise to Weber's canonical
equation“s),

d2¢

[] - 1., -

where ¢ is an as yet undetermined parameter, independent of t. Eq. (29)
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may be solved exactly in terms of parabolic cylinder functions (45’46).
For this discussion it is preferable to consider the two linearly

independent solutions A(t) and B(t), in temms of confluent hypergeometric
functions, given by

i ~ :
ACt) = —T exp (- 1 t2)Mfa?, §; 182) (30a)
Fla' + 1)
i
B(t) = ;(-?'-l)— exp (- it) tM[a" + %. -fr; %—t’] ’ (30b)
a'

with a' = (1 - 2€)/4. Two stationary solutions of Eq. (29) are obtained
with a«' = 0, -1 and the e-values so obtained are zeroth-order solutions
to the "eigenvalue' problem given by Eq. (14a).

It should be noticed that, apart from the bound-state energies
previously determined, Weber's equation supports an infinite sequence of
spurious discrete eigenvalues. They are spurious with respect to the
Morse otential as was seen after solving the problem analytically since
it gir»s rise to two eigenstates for the range and depth considered in the
example. This peculiarity should not be a matter of astonishment. One
recalls that the transformation utilized within the context of the ICEM
does not establish an isospectral correspondence between two bound-state
problems. Indeed, this would be the case in the conventional comparison
equations method (see Sec. 3), including the cases where an iterative
procedure is used,

Using the zeroth-order solutions as a first approximation,
equations (17) may be solved iteratively between two points suitably
removed from the turning points, where y(x) given by Eq. (15) approaches
zero. One may then seek a solution where the number of zeroes is in
agreement with the oscillation theorem(“). Instead, Eqs. (17) were
mmeridally integrated, utilizing a solver from the open literature, and
using Eqs. (30) as independent solutions to Eq. (29); the initial
conditions were chosen such that the approximate wavefunctions matched the
exact ones at the point where the integration began.
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Exact normalized bound-state wavefunctions obtained from Eq. (26)
are shown as solid lines in Figs. 1a and 1b. The computed approximate
wavefunctions corresponding to the exact eigenenergies are represented in
the drawings by dashed lines. They are graphically indistinguishable from
the exact solutions up to values about T¥ 2.0 in Fig. 1a, and up to values
about r% 2.5 in Fig. 1b. The numerical results are most encouraging,
Indeed, up to those values of r the difference in the results was less
than 0.2%, Dotted and dashed-dotted curves illustrate the solutions
obtained when the energy values were chosen to be about 4% less than
(dotted) or greater than (dashed-dotted) the exact eigenenergies. In the
former case the "wavefunctions" do not turn down as much, failing to match
the node to the right of the first (second) turning point in Fig. la
(Fig. 1b); for large distances the "wavefunctions" go to +», This
behavior is to be expected from an analytical treatment of the problem.

In the latter case the 'wavefunctions" peak sooner and they descend more
rapidly than the corresponding exact wavefunctions. We notice, again as
expected, that : (a) the "wavefunctions' exhibit more nodes than
required, and (b) the 'wavefunctions" go to -,

The perturbation-like temm £(t(x)) defined by Eq. (7b) was
evaluated numerically using Eqs. (8) and (9). 1In the very-near turning-
points regions it was evaluated as described in Sec, 3. Figure 2 compares
the values of f(t(x)) for the ground-state as a function of x with those
of q? (t(x)), of which potential it may be regarded as a perturbation, It
is seen that its values are of the order of 1% for the main range of
integration. It is certainly dominant at the classic turning-points
regions. It takes its largest values far to the right of the second
turning-point, where the Morse potential differs substantially from the
hamonic oscillator potential.

5. THE MANY-CHANNEL PROBLEM

Ordinary one-dimensional linear second-order differential
equations can be mmerically solved rapidly and very accurately using any
of the several highly efficient integrators available (12). This is not,
however, the case, in a many-coupled-channel problan(14’17'26). As was
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Fig. 1,

Comparison of the results of the analytical and numerical methods
of calculation of normalized eigenfunctions, corresponding to the
two stationary states of the Morse potential for the parameters
given in Sec. 3. Figure la: Ej = -0.4114 eV. Figure 1b:

E‘ = ~0.0850 eV. Solid lines: analytical solutions; dashed lines:
numerical solutions generated using the exact eigenenergy value.
The agreement of the computed and the exact bound-state eigen-
functions is excellent even for the lowest eigenvalue. Dotted
(dashed-dotted) lines: numerical solutions obtained using and
energy value lower (higher) than the exact one by about 4%,
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Fig., 2. The perturbation-like term f(t) (see Eq. (7b)) and the comparison
momentum qz(t) for the ground state as a function of x.

pointed.out in the Introduction, the main limitation in this case is the
amount of computer time available. It becomes almost prohibitive when the
number of channels is of order onc-hundred(26). It is our believe that it
is for this case that the ICEM is most useful.

The discussion is limited to the case for which the many-channel
problem is reduced to solve the following set of coupled-Schrédinger
equations:

d? 2 .
[(—;* pg(x)lwgm g Ve 0¥, () (31)
¢ and ¢ being the channel indices.

According to the procedures employed in Sec., 3, we rewrite Eq.
(31) in the revised form:
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dxz

+ pé(x) +%- ¢C; x>:i WC(X) = g B— ¢K; >:>6€§ + Vgc(x)] w(; (x).
(32a)

After using the MG transformation

one readily obtains:

d2 2 = '.-2 '.1 . -
[dt’, + qi(tE)J¢€(tE) E tg LZ <t£. x>6€c + VEC(X)]¢C . {(32b)
S

There is now a new and different spatial coordinate t,. for each

g
channel related to the old and new corresponding momenta by
pg (%)
ty = s (33)
g (ty)

and determined uniquely from relationships similar to Eqs. (12).
The choice of the ansatz

b0 = A (X)ag () + B, (x)B, () : (34)
and the constraints

Ag(x);g'(x) . Bg(x)sgl(x) =0 (34b)
yield
C ’

o ,,-r'1~ B 1R i1 . -;
a'(x) W [Ag' Bngg(x) E kz <t x>6EC + ngjp

. . _ 3
8'() = W' (A, BIA () E E% <t s o8, ¢ Vsé]wc ) (35b)
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This is the starting point common to several calculations(9’14’17'21’26'34'49.

In heavy-particle collisions including energy transfers and
chemical reactions, Eq. (31) assumes a somewhat more complex mathematical
structure. The main feature being the inclusion of a first derivative of
the wavefunction with respect to the spatial coordinate. Before applying
the preceding scheme, a imitary transformation is made to simplify the
structure of the equation(49). In those cases it is useful to change the
constraint given by Eq. (34b) to the following convenient matrix equation
constraint :

Ao ' +IB ' +%(Aa +TB ) = @ ) (36)

where w denotes a square matrix whose temrms include first order
differential operators (21’49). Clearly, the first two terms in Eq. (36)
reduce to Eq. (34b) if w were not present. The procedure used to obtain
the solution to the generalized Eq. (35) is straighforward. It is seen’
that the only effect is to add a diagonal term, the SD term, to the
coupling potential matrix elements. As it is seen from Eq. (35) the
structure of the resulting first-order differential equations is not more
complicated than that of Eqs. (17) after incorporating the SD term.
Therefore, one can take advantage of the analytical simplicity of the ICEM
(extended comparison equation or uniform approximation methods) and the
numerical easiness of the reference potential procedure to perform
efficient close-coupling calculations whenever great accuracy is required
in a many-channel problem,

6. SUMMARY AND DISCUSSION

It has been shown that the improved comparison equation method,
ICBM, is markedly superior to both the analytical comparison equation or
uniform approximation method which uses the Miller-Good transforma-
tion(s's’g'u), and the numerical approximate potential calculation method .
implemented by Gordon(16-19) ;5 solving Schrddinger-like equations.
Maintaining the simplicity introduced by MG, the rigor is preserved




305

without. the need to use complicated iterative schemes. In spite of its
simplicity, in the present method the computational efforts are reduced
in those situations which require considerable numerical accuracy. The
method is also amenable to a variety of approximations which further
simplify the problem and reduce still further the computational time.

The gist of the comparison equation method is to utilize a
convenient simultaneous nonsingular transformation of the wavefunction and
the spatial coordinate, to transform the original linear second-order
ordinary differential equation to a simpler form. It is an analytical
approach. Yet the procedures in use (3,5,9) make approximations that are
not always legitimate. Further, the iterative schemes proposed to improve
accuracy(l"n) do not differ basically from the perturbational approaches,
including all their inconveniences (21’25).

In the reference (numerical) potential scheme the true potential
expression is approximated by a simpler form which permits an analytical
solution. The solution obtained for the approximate problem is then
utilized for solving the original problem. In principle, a convenient
handling of the numerical procedure adopted guarantees the achievement of
any desired accuracy. The renowned Gordon method(l(””) includes the
unpleasant feature that one must match the logarithmic derivative of the
wavefunction at the extremes of each small domain into which the range of
integration is decomposed. It is therefore onerous for computational
purposes, especially in problems requiring great accuracy and where many
channels are to be dealt with,

In the present proposal the above two schemes are blended properly
in a maniage de convenance. The reference potential is obtained after an
analytical transformation is performed. Further, the same reference
potential may be utilized for the entire range of integration. The
comparison is then made with a different-structure equation, namely, a
homogeneous one to an inhomogeneous form. This procedure brings the
comparison method close to the reference potential scheme, allowing one to
make use of the own advantages that each method posseses,

Two additional appealing features of the method that are worth
noting are: first, it compares favorably to the conventional comparison
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equation method, guaranteeing an exact determination of the new spatial
coordinate, without any semiclassical approximations; second, it compares
favorably to the reference potential method, because the computational
efforts are reduced while a great accuracy has been maintained.

The added complication of the present method is the necessity to
evaluate the Schwartzian derivatives which is usually done numerically.
Nevertheless, if one initially accepts that the problem must be grasped
numerically, a promising and powerful amalgamated procedure emerges; it
consists of looking for Schr8dinger-homogeneous-like equations that have a
potential with the following characteristics: It resembles the old
potential in a very crude way, and it should be simple enough to permit an
analytical solution of the Schrtdinger-like equation"m terms of non-
elementary functions. These functions are used to construct nunerical
solutions to the problem under consideration.

The main disadvantage of the comparison equation approach is that
the Schwartzian derivatives neglected; it thus fails to yield an exact
solution through the classical transition points, wherein both p?(x) and
q2(t) go to zero, and the SD term determines the behavior of the
wavefunction. The usual reference potential method employs a Taylor series
expansion of the true potential and only the first term is kept, Whenever
a great accuracy is required, both procedures have their limitations.
These are overcome in the present approach.

The advantages of the method proposed here are still greater in
many-channel problems. In such cases one simply adds the SD term as a
diagonal term to the coupling potential matrix elements (see Eqs. (32)).
If the set of coupled-second-order equations is reduced to a first-order
system, the appearance of the (exact) last one does not represent
substantial complications over the one obtained when neglecting the SD
values. Further, whenever the approximations made within either the
conventional comparison equation or reference potential methods are valid,
it is an ea;sy matter to carry over these approximations within our scheme,
There is a final important theoretical feature of the method advocated
here which is not shared by conventional comparison equation and reference
potential treatments. We do not neglect terms. Thus any comparison
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equation may be used in practice. ,

In light of the discussion above, the saving in computational.
time and the reliability of the solutions obtained should appear obvious.
Recent experimental studies of elastic and inelastic atom-solid surface
scattering(50’51) is spurring growing interest to describe these
scattering systems theoritically(36’37’52). An application of the present
scheme to scattering of atoms by a surface, where upt to fifty channels
are involvéd(34‘37), is currently in progress. Further applications of
the method to scattering problems (from purely repulsive or purely
atractive regular potentials) in quanfum mechanics is envisaged.
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