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We study the effect of an on-site electron-phonon interaction on the electric transport of
mesoscopic heterostructures, described by a tight-binding Hamiltonian with a local electron-
phonon interaction. The electronic problem is solved iteratively and the phonon population
is found self-consistently. The conductance as a function of the applied bias is calculated
using a new formalism suitable to treat many body effects. Double barrier heterostructures
are studied. The results compare well with experiments and generalize previous calculations.
We also consider a flat potential profile (e.g. a layer of GaAs between a SiGe alloy). The
conductance shows an step-wise behavior which is related to the opening of phonon channels
when the bias is increased. We propose as well a device which could generate coherent sound.

L Introduction

The study of electronic transport in mesoscopic het-
erostructures has created new ideas in the general field
of transport in solids which was mainly developed to
understand the dynamic of carriers in macroscopic sys-
tems. Asg soon as the size of the system approaches the
wavelength of the electron, transporl depends upon the
iuterference of propagating electronic waves.

The phonon assisted resonant tunneling in a double
barrier heterostructure (DBH), first observed by Gold-
man, Tsui and Cunnigham!!'? and studied by several
authorsi®¥ was an important contribution to the un-
derstanding of this problem. The oscillatory behaviour
of the conductance in semiconducting point contacts
and satellite peaks in double barrier devices are conse-
quences of the electron-phonon interaction.

The theoretical treatment of these systems is rather

involved because they are many body systems referring
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to a far from equilibrium situation, where standard lin-

ear response theory does not apply.

Several microscopic models have appeared in the lit-
erature to study transport in nanodevices in the pres-
ence of electron-phonon interaction. They were treated
as a scattering problem which required a two particles
Green function®], as a first order tunneling strength
calculation® or using the very powerful Keldysh for-

malism as a nonequilibrium problem!®l.

We develop in this paper a formalism capable to
treat the many body problem which results from a situ-
ation in which electronic carriers interact with phonons
as they go through a mesoscopic heterostructure. The
problem is treated here within the context of the gen-
eralized Landauer-Biittiker formalism{8] extended to
incorporate the effect of many body interactions. How-
ever it is based in a full microscopic model for the elec-

trons, phonons and their interaction, different from the
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trons, phonons and their interaction, different from the
phenomenclogical approach followed by Biittiker to in-
troduce dissipation(®], ‘

In particular we are interested in the case when the
distance between the resonant peaks Aep gpproaches
the energy of the longitudinal optical (LO) phonon Awg.
This situation can be easily tailored by controlling the
width of the well and the height and width of the bar-
riers. When Aep coincides with fwg it is possible to
create a situation in which the electrons are injected
at the second peak to invert the population. These
electrons decay to the lower resonant level emitting co-
herent LO phonons . This effect, analogous to the laser
effect but with sound instead of light could be called
SASER ar;d it will be discussed later.

This paper is organized in the following way. In
section two we present the model Hamiltonian and also
the many body operators adequate to treat it. Section
three is devoted to develop the method used to solve
the eigenvalue problem introduced in the precedent sec-
tion and to describe the calculation of the charactéristic
curve of the system . The fourth section discusses the
reliability of the production of coherent ultrasound. Fi-
nally in section five are discussed the results for several

different physical situations.

II. The model

The system is represented by a nearest neighbors
one-dimensional tight- binding Hamiltonian. We ne-
glect the interaction between the electrons and the
acoustic phonons because in polar semiconductors like
GaAs it is much weaker than the electron optical
phonon interaction which is considered in the Frohlich

approximation.
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In this Hamiltonian c} represent the creation op-
erator of an electron in a state localized at site § with
spin 0. The spin index was suppressed to simplify the
notation because we do not treat here the magnetic
problem. The summation over i includes implicitly a
summation over . The operator b:‘ creates a phonon
in the well with linear momentum ¢ .The potential pro-
file is included by considering a site dependence of the
diagonal matrix elements ¢; .

We suppose that at +co and —oo the system is con-
nected with a thermal bath of particles which plays the
role of fixing the left and the right Fermi levels ¢f, and
€F, -

We are assuming as well that the electron-phonon
interaction is restricted to the well whose length L is
typically of the order of 10a to 50a where a is the lattice
parameter. In reciprocal space this admits a localiza-
tion for g, of the order of 1/L. Besides, as the coupling
g, is stronger for low ¢, and for the sake of simplicity
we approximate g = g640.

The state of the system is expanded in a basis of
states [in > which represent an electron localized at
site i together with the existence of n phonons in the

well.
¥ >= Zaﬂin >. . (2
We assume the basis to be ort}lonormal such that

af =<inl¢ >. (3)

If we define the operators

OF = ¢;b"°, “
we obtain
o = = < 0[O7¥ >, (5)

vnl
where |0 > is the vacuum state.
The equation of motion for these operators can be

casily obtained and it writes
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do?
d

ik = (& + nhwo)OF + 1O + O4y)

+ gO(bt +b)+ng ) cfeed™ . (6)
i

The last term in this equation represents an
electron-electron interaction mediated by phonons .
This is the Migdal term that gives rise to superconduc-
tivity . Consistently with neglecting the direct electron-
electron interaction we do not consider the one medi-
ated by the phonon field.

We calculate the matrix elements of equation (6)
between < 0] and |¢ > and looking for stationary solu-
tions of the problem we obtain the following eigenvalue

equations to be solved

hwa? = (& + nhwo)a? +t(al_; +a54)
+ g(WaFiatt+vmaTh). (D)

III. The calculation

As illustrated in Fig. 1, i = 0 is the first site of the
DBH left barrier. For i < 0 we have ¢; = 0 and we

can consider g = 0. Therefore the system (7) decouple’

into a set of independent equations that can be solved

analytically. The solution is

o} = Ipe™e=" 4 Rpe=itn", i<0, (8)"

where k;, is defined by the dispersion relation

hw = nliwg + 2t cos kaa, (9)

where t < 0.
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Figure 1: It is shown the potential profile for an applied bias
V = 0.02¢. The position is measured in units of the lattice
parameter. For this situation five channels are possible.

For areal k,; the first term in equation (8) represents
an incident wave and the second a refiected one.
It is convenient to define the energy measured from

the bottom of the conduction band € = fuw — 2t
¢ = nhwy + 2t(cos kpa — 1). (10)

The second term in equation (10) is the kinetic en-
ergy of the electron. For n greater than some np this
kinetic energy turns out to be negative (no is zero if the
Fermi energy ¢f is less than the LO phonon energy fwg
as it is usual). That means that we have k, = ix, and

the solutions take the form

a? = I,e" % 4 Rye™™, i<0. (11)

In this case the amplitudes I™ have to be zero for
these modes in order to assure a regular behavior for
z — —o0. They are vanishing modes at Jeft.

On the other hand for i > N we have a flat potential
profile, i.e. ¢ = —V where V is the applied bias, and
as g = 0 in this region as well, the system of equations

is decoupled.

Without lose of generality we can assume that there

are no incoming waves from the right. The solution can

be written then as

al = Tpe'n™, i>N (12)
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where k;, fulfill the dispersion relation

hw = =V 4 nhwo + 2t cos ki, a. (13)

We have not solutions with negative kinetic energy
at the right part of the system.

The problem reduces now to make compatible the
left with the right solutions what can be easily achieved
by numerically iterating equation (7). The process is
very fast and yields the exact solution of this model.

From equation (7) we can get the coefficients at site

i — 1 as explicit functions of the two following sites.

a;"t = [(hw - € — nhwo)/t]a}
~ (g/)NVaFT1afH + v a)™?) - af (14)

We calculate from expression (12) the coefficients at
two consecutive sites with i > NV as a starting point. By
choosing Ty, = 0 for some channel and zero for the oth-
ers and iterating (14) we get the expansion coefficients
a? at two successive sites with i < 0 from which the
incident and reflected waves amplitudes can be calcu-
lated. This correspond to arbitraries values for I, and
R,,, and in general I, will not be zero for the channels
below the conduction band. Therefore these solutions
have no physical meaning. However, as the relation be-
tween input (left) and output (right) is linear, we can
calculate the response Tagi) » Rny for an arbitrary in-
put I, .

Let us define matrices M and MR such that

Tagy = 3 Mrmnlnq) (16)
m

Ry = Z MpmnInny (16)

or, shortly T = MpI, R = Mgl
As we start from the right we have to express I and

R as functions of T by inverting the former relations

1 = M7lT = GiT (17)
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R? = MRM7!T = GRT (18)

For the sake of simplicity we start with Taqy = bmt
and then from the amplitudes calculated iteratively we
get Gy = 10 and GR = RO. After that it is straight-
forward to obtain My = G7! and Mg = GrGil.

As it was discussed above, the situation for ¢p <

hwg corresponds to I = Ipbpg that yields the result

Th= (G}'l)nofo (19)

Ry = (GRG7 " )nolo (20)

and gives the response to an incoming electron with
energy 0 < e < ¢f.

Our purpose is to calculate the characteristic curve
of this device. This can be achieved calculating directly
the current J.

In the region outside the well in which g = 0 the sys-
tem decouples into independent channels and the cur-
rent is easily calculated . From the Hamiltonian (1) we
obtain the continuity equation

dQ:

= T i —Jicya) =0 (21)

where Q; = ec]¢; is the charge operator at site i and
Jis1/2, the current operator at the bond linking sites i

an i+ 1, is defined as

Jivryz = (et/Bi)(c}eipr - cyyci) (22)

from which we get the average current at this place

Jirry2 E< Y Vigapal¥ >= (2“/5)21"1(“?;1“?)
(23)
For i > N, a? has the simple analytical expression
(12) and we get

Jigryz = (2et/R) Y |T, | sin k}a, (24)
n
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and each term (i.e. the current in each channel) is site
independent as expected. In the same way for i < 0 we

get

dirrga = (2et/8) Y (af? — |Ra[*)sinkna,  (25)

n S'Io
It can be seen that the current is conserved in our
model. .

For the case ep < fiwg this expression reduces to

Jitry2 = (2et/B)(1lo|* — |Rol*) sin koa,  (26)
because ng = 0 '

In order to get the total current we have to sum over
all the s;;l(tes below the Fermi energy. This sum is trans-
formed in an integral over energies and taking into ac-
count that for the zero channel at left, p(¢) = sin™! koa
we get the simple expression

jr = (4et/h) ,/olp(lfolz = |Ro|*)de, (2n)

where we have assumed one incoming electron per state

ko and spin.

IV. Coherent sound

The formalism developed here by contrast with the
one described by Ref.. [4] is not limited to treat the
situation in which Acp » M. This limitation arise
there from the reduction of the well to a single point via
a renormalization. Besides, our formalism pefmits to
treat the phonon system coupled with electrons travers-
ing the well.

The device proposed here consist in a double bar-
rier system with a widebwell in between in such a way
that the energy difference Ac¢p between the first and
the second peak Jocalized within it, coincides with the
phonon energy. The energy Aep depends upon the ap-
plied potential because the well becomes approximately
triangular with an inclination determined by the bias.
If the barriers are wide or high the width of the reso-
nant peaks diminishes and its spontancous half-life in-

creases. The width of the well and the barriers can be
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easily controlled in samples grown by molecular beam
epitaxy. For GaAs—GaAlAs samples, the height of the
barriers can be also controlled through the aluminum

concentration.

if the half-life of the electrons traversing the well
with energy corresponding to the first excited peak is
long enough, the population in the well is inverted (as
it occurs in diode laser). When an electron relaxes by
emitting a LO phonon, this elastic excitation is con-
fined to the well{!®%11), The presence of this vibration
at a frequency that coincides with Aep will stimulate
the emission of new phonons in phase with the first
one. It can be seen in our Hamiltonian that the proba-
bility of stimulated emission is equal to the probability
of absorption. As the population is inverted the pro-
cess continues, producing a great number of coherent
phonons, until the heat produced by the decay of LO
phonons (and by electrons also) put the system out of
the resonance condition. The system can be pumped
continuously by injecting electron but probably it will

be necessary to work in a pulsed regime.

Several shortcomings have to be overcome in order
to produce this device in a laboratory. Probably a fine
sintony will be required in order to achieve the reso-
nant condition. This can be done through the applica-
tion of a magnetic field. The continuum due to the free
electron motion in the direction parallel to the inter-
face could broaden too much the peaks. This problem
could be bypassed by reducing lateral dimensions. Be-
sides, the beam of LO-phonons has a group velocity
near zero and they decay by emmiting a pair of acous-
tic phonon with same energy and opposite wave vectors.
The time scale of this decay is a few picoseconds then
the beam of LO-phonons is confined close to the well.
The secondary beam of acoustic phonons has the half of
enenrgy of the primary LO beam and it can propagate
outside the device. The beam of acoustic phonons may
be uo longer cohercent. Several other effect could create

other difficultics to fabricate the device.
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If the coherent ultrasound could be produced, it will
have a wide range of applications. As this high fre-
quency sound can propagate through GaAs it will be
possible to separate a reference beam and make it to
interfere with one that passes through a sample, The
registered interference pattern could be used to produce
an hologram that reveal the distribution of impurities
and defects. ‘

We don’t know if very high frequency ultrasound
could by used to study biological tissues but, if it were
possible, the coherence of the beam will strongly im-
prove the resolution of ecographies and will permit also

the production of medical holograms.

V. Results

Here we present the characteristic curves for dou-
ble bm;rier heterostructures and for systems with a flat
profile.

For GaAs the hopping constant can be taken
t = 5.2¢V determined from the effective mass m* =
0.0671%). The LO phonon frequency of bulk GaAs is
Fwp = 36 meV, an the strength of the electron-phonon
interaction is approximately ¢ = 20 meV. The other
parameters will depend on sample preparation. The
height of the barriers varies typically between 40meV <
¢ < 400meV depending on aluminum concentration.
The widths of the barriers and the well have a wide
range of variation. The Fermi level depends on the
doping (n*).in bulk GaAds , and it can be also variate
easily . A high Fermi level broaden the peaks.

We have taken a typical symmetric sample com-
posed of a well of 25 layers of GaAs between barriers
of 9 layers of Al.Ga;_;As. The height of the barriers
was taken eg = 100meV and the Fermi level at left was
set to epp = Smel/ .

We can observe that the energy difference between
the main peak and its satellite A¢) is not equal to the
LO phonon energy hwg. This is due to the fact that the
potential drop inside the well is less than the applied
voltagel’l. As our model assumes a linear variation of

the potential due to the applied bias (neglecting the
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band bending and the asymmetric profile due to non-
linear effects), the potential drop at the middle of the
well is half of the applied bias. Therefore we expect a
satellite peak for V =V, + 25wy,

The results are shown in Fig. 2. The applied volt-
age is measured in units of t. The energy difference

A€y =43meV is very close to the experimental result.

We have also calculated the current for a system
with a flat profile. This situation can be achieved exper-
imentally growing layers of GaAs merged in a matrix of
a SiGe tailored in such a way that the conduction band
offset between them be negligible. The GaAs—SiGe in-
terfaces act as contacts, then the potential drop occurs
through the GaAs. When the applied voltage increase,
new channels are open and the current jumps. In Fig.
3 we can observe these steps. In a real device these
discontinuities in the current will be reduced to only
discontinuities in the derivaritive of the current due to

the motion parallel to the interface.
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e
CORMS 4
o1 A\
: i
i
€ i\
¥ 5 sem010 i
- i
<
O . /‘
i /
9.09000C T v YT y
o. 2.00% 260 co's 0.020
Vs.i0ge

Figure 2: The characteristic curve for a DBH shows the well
known satellite peak.
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